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Multi-stage Reverse Diffusion Attack Handling
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ABSTRACT

Self-supervised face representation learning (SFRL) shows strong potential for scalable face-related applications,
yet remains vulnerable to adversarial attacks that cause dual facial semantic degradations, namely (1) structured
distortions in key facial regions (e.g., subtle inter-ocular distance shifts) that disrupt identity-related features,
and (2) unstructured additive noise (e.g., illumination artifacts) that entangles with face-related features in la-
tent space. Existing defense methods struggle to deal with both facial semantic degradations in SFRL, resulting
in limited robustness. To address this, inspired by existing reverse Diffusion approaches that effectively tackle
the image denoising, we propose DAR-SFRL, a novel Degradation-adaptive Attack-Robust Self-supervised Face
Representation Learning framework. DAR-SFRL models adversarial attacks as a degradation-based function com-
posed of geometric distortions and additive noise, applying a multi-stage reverse Diffusion iterative process
to recover facial semantics. At each stage of the process, DAR-SFRL employs: (1) an adaptive degraded-face
restoration method that progressively reverses the degradation function and recovers fine-grained details from
structured distortions, and (2) a noise-orthogonal contrastive learning mechanism to mitigate the impact of un-
structured additive noise by maximizing the dissimilarity between noisy and clean image features in the latent
space. Extensive experiments across tasks—including face recognition, facial expression recognition, and facial ac-
tion unit detection—demonstrate that DAR-SFRL significantly outperforms state-of-the-art defenses under various
adversarial attacks, highlighting its robustness and generalization in real-world face-aware applications. Our
evaluation code is available at https://github.com/23wk/DAR-SFRL
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1. Introduction

Learning facial representations is an important task in computer vi-
sion, which is widely applied in various face-related tasks, such as Face
Recognition (FR), Face Emotion Recognition (FER), Human-Computer
Interaction (HCI), Financial Security (FS), and Medical Diagnosis (MD).
Although supervised learning has helped deep neural networks achieve
promising facial understanding results, it heavily relies on large-scale an-
notations which require substantial labor costs. Recently, self-supervised
facial representation learning (SFRL) has emerged as a promising al-
ternative without overly relying on large-scale manual annotations. By
learning from self-generated labels, SFRL enables effective utilization
of vast unlabeled data, generating effective face-related models that are
scalable for large-scale applications [1,2]. However, existing SFRL meth-
ods are often vulnerable to the threat of adversarial attacks in real-world
scenarios, resulting in limited robustness in real-world face-related ap-
plications. Therefore, developing a robust SFRL method against various
adversarial attacks remains a key and pressing research challenge.

To deal with adversarial attacks, current research has explored two
primary defense methods for general image representation: adversarial
training and adversarial purification [3,4]. Adversarial training methods
improve robustness by incorporating adversarial disturbances directly
during training. For example, Kim et al. [5] utilized unlabeled data for
adversarial training and tried to defend against attacks by maximizing
the similarity between randomly augmented samples and their adver-
sarially perturbed counterparts at the instance level. Jiang et al. [6]
combined self-supervised contrastive learning with adversarial training
thereby improving the robustness of the model against introduced adver-
sarial attacks during training. Adversarial purification-based methods
aim to restore attacked images before inference, typically using gen-
erative priors or scoring functions. Nie et al. [7] relied on finding the
optimal time step in the forward process of the diffusion model to un-
cover data from adversarial disturbances. Yong et al. [8] proposed a
scoring function to distinguish attacks from clean data.

Despite the progress in general image representation tasks, we find
that both defense paradigms face inherent limitations in dealing with
SFRL [9,10]. Adversarial training methods primarily optimize for global
feature robustness by augmenting the training set with adversarial
examples and do not explicitly model or correct localized geometric dis-
tortions at key facial landmarks. As a result, the learned representations
remain vulnerable to subtle structural degradations, especially in regions
critical for identity and expression modeling. Adversarial purification
methods typically perform denoising in the pixel domain and lack mech-
anisms to disentangle noise from meaningful semantics within the latent
space. This limitation is particularly pronounced when noise is entangled
with legitimate facial features such as texture or illumination, making
it difficult to recover fine-grained, structurally relevant identity infor-
mation. Compared to generalized image representation learning, SFRL
heavily relies on fine-grained facial structures and subtle semantic cues
to support downstream applications like identity recognition and emo-
tion perception. However, under various adversarial attacks (e.g., FGSM
[11], PGD [12], and MIFGSM [13] ), these delicate facial semantics are
easily disrupted, resulting in significant degradation in discriminative
performance.

As shown in Fig. 1, our analysis reveals two primary degradation
patterns in SFRL attacks: (1) Structural Semantic Degradation, where
adversarial perturbations disrupt key facial regions, such as the inte-
rocular distance, nose bridge, and mouth corners, thereby impairing
the extraction of identity-relevant structural cues; and (2) Unstructured
Additive Noise, where high-frequency noise entangles with genuine
semantic features (e.g., illumination artifacts) that entangle with face-
related features in latent space. Existing adversarial training and ad-
versarial purification methods typically focus on either global feature
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robustness or pixel-level denoising, making it challenging to simulta-
neously address these intertwined, fine-grained degradations. This gap
fundamentally limits their effectiveness in defending against semantic
degradation in facial representation learning.

To overcome these limitations, recent work has explored reverse dif-
fusion for denoising via iterative refinement, leveraging diffusion models
to reconstruct high-fidelity images from adversarial inputs [7]. Building
on this, we propose Degradation-Adaptive Attack-Robust Self-supervised
Face Learning, i.e., DAR-SFRL, a multi-stage reverse diffusion frame-
work that models both structural semantic degradation and unstructured
noise as a unified degradation function, enabling targeted and robust
defense against face adversarial attacks in SFRL. Fig. 1 shows a brief
motivation for our approach, and Fig. 2 presents a training pipeline
of our approach for attack-robust SFRL. Specifically, we introduce two
key modules at each stage of DAR-SFRL: Degradation-Adaptive Face
Recovery (DAFR) and Noise-Orthogonal Contrastive Learning (NOCL).
First, DAFR employs a maximum a posteriori (MAP) strategy to progres-
sively reverse the degradation function and recover fine-grained details
from structured distortions. Then, NOCL comprises a noise orthogonal
disentangling loss, a facial-robust contrastive loss, and a noise-sensitive
contrastive loss, to mitigate the impact of unstructured additive noise
by maximizing the dissimilarity between noisy and clean image features
in the latent space. Through the multi-stage collaborative training of
DAFR and NOCL in DAR-SFRL, we effectively capture the facial semantic
degradation caused by face adversarial attacks, enabling a more precise
understanding of adversarial attack patterns in SFRL. This enhances the
robustness of DAR-SFRL in several face-related downstream tasks.

In summary, the main contributions of this paper are as follows:

(1) We propose a novel Degradation-adaptive Attack-Robust SFRL
method in a multi-stage reverse diffusion learning manner, termed
DAR-SFRL, which aims to effectively address the facial semantic
degradation caused by adversarial attacks for obtaining attack-
robust SFRL. To achieve this, we introduce two key modules in
each stage of DAR-SFRL: Degradation-Adaptive Face Recovery
(DAFR) and Noise Orthogonal Contrastive Learning (NOCL), to
formulate semantic degradations caused by face adversarial at-
tacks.

(2) We propose the DAFR component, which adaptively simulates and
reverses facial semantic degradation to recover fine-grained de-
tails from structured distortions. In DAFR, we introduce Bayesian
theory and Taylor expansion to iteratively approximate the op-
timal degradation process, capturing the relationship between
degraded and clean images to effectively disentangle different
structured degradation patterns.

(3) We devise a novel NOCL to further mitigate the impact of unstruc-
tured additive noise using three loss functions: noise-orthogonal
disentangling loss, face-robust contrastive loss, and noise-sensitive
contrastive loss. By learning in appropriate feature spaces, NOCL
effectively decouples unstructured additive noise from face adver-
sarial attacks by maximizing the dissimilarity between noisy and
clean image features in the latent space.

(4) We evaluated the performance of DAR-SFRL on several face-
related downstream tasks, including facial expression recognition
(FER), face recognition (FR), and facial action unit detection
(FAU). Extensive results show that DAR-SFRL outperforms existing
methods in defending against seven types of face adversarial at-
tacks during inference. For example, under the UPGD attack in the
FER task, the baseline’s performance dropped by 17.15 %, while
DAR-SFRL’s dropped by only 0.52 %, offering a 96.98 % relative
improvement. These results demonstrate DAR-SFRL’s effective-
ness in enhancing robustness for face-related tasks in real-world
scenarios.
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Fig. 1. The intuitive motivation of our method. Various adversarial attacks introduce subtle semantic degradations (Deg.) in facial data, which contains: (1) structured
distortion of key facial regions, and (2) unstructured additive noise that disrupts face-related features in latent space. Existing SFRL methods lack a targeted and
holistic learning strategy to defend against such adversarial perturbations, resulting in significantly degraded performance in several downstream face tasks.

2. Related work
2.1. Self-supervised facial representation learning

Self-supervised learning has shown a wide range of application
prospects in the field of facial representation learning [14-18]. For
example, He et al. [19] enhance face recognition by self-supervised
3D reconstruction. MAE [20] introduces a non-trivial and meaning-
ful self-supervised task by masking large portions of random blocks in
the input image and reconstructing the missing pixels. MCF [21] uti-
lizes image-level contrastive learning and masked image modeling, as
well as facial representation learning knowledge extracted from pre-
trained models of external image networks. PCL [22] decouples the
facial and pose features, and then conducts comparative learning on
these features, achieving strong performance on both pose and facial
analysis tasks. FRA [23] proposes a new self-supervised face repre-
sentation learning framework to learn consistent global and local face
representations. Although some progress has been made, most of the
existing work is based on learning facial representations in pre-trained
”black box” networks. This opaque working mechanism makes them vul-
nerable to attacked samples, that is, attackers can use attacked samples
to specifically corrupt highly personalized and sensitive facial features.
Misleading the network to learn incorrect features to fool the face recog-
nition system leads to face information leakage, leaving a huge security
risk.

To provide a more comprehensive context, recent surveys offer valu-
able overviews of self-supervised learning. Liu et al. [24] categorize SSL
methods into generative, contrastive, and hybrid types, outlining their
theoretical principles and practical applications. Balestriero et al. [25]
provide practical training recipes and conceptual insights, calling SSL
the “dark matter of intelligence” for its hidden complexity and power.
Gui et al. [26] highlight current challenges, such as robustness and scal-
ability, which are critical for advancing SSL. These reviews collectively
establish a foundational understanding that informs the design of more
robust and interpretable self-supervised facial representation models.

2.2. Adversarial defense

Adversarial attacks involve adding small, carefully designed dis-
turbances to the original input data, which are difficult for humans
to detect, leading to attacked samples [4,27,28]. These samples cause
deep neural networks to make incorrect predictions in tasks like fa-
cial recognition and image classification. To counter this, researchers
have developed various defense methods [5-7] to enhance model ro-
bustness and accuracy.For example, Chen et al. [29] used the improved
FGSM to generate attacked samples for adversarial search, and em-
ployed a reconstructor to help the classifier learn key features under
disturbances. Wang et al. [30] mapped attacked samples back to clean

sample manifolds through an image-to-image generator, enhanced sam-
ple complexity, and integrated adversarial training into the GAN process
to eliminate the problem of confusing gradients and improve defense
effectiveness.Mao et al. [31] drew on NLP-style adversarial training,
converted images into discrete visual words through VQGAN, and used
symbolic adversarial disturbances to minimize risks, significantly im-
proving the performance of visual representations. Yoon et al. [8]
proposed an EBM adversarial purification method based on denoising
score matching (DSM) training, which can quickly purify attacked im-
ages in a small number of steps.Yang et al. [3] proposed a defense
method based on matrix estimation, which destroys the adversarial noise
structure by randomly deleting pixels and reconstructing the image,
strengthening the global structure of the original image, and making the
network more consistent with human classification perception. Although
adversarial defense methods have made progress, most existing adver-
sarial defense methods do not explicitly account for the dual nature
of adversarial degradation in SFRL, namely, structural semantic degra-
dation and unstructured additive noise.Together, these two types of
degradation pose a compounded challenge that existing adversarial de-
fense methods are not designed to handle effectively. Most adversarial
training techniques focus on improving instance-level robustness but
fail to capture the subtle structural misalignments caused by perturba-
tions in critical facial regions. Conversely, purification-based defenses
typically operate in the image domain and lack mechanisms to disen-
tangle high-frequency noise entangled in the latent feature space. This
motivates the need for defense strategies that jointly model both struc-
tural and unstructured degradations to robustly enhance the resilience
of self-supervised facial representation learning.

3. The proposed method
3.1. Problem definition and overview

The overview of the proposed DAR-SFRL is shown in Fig. 2. Our pri-
mary goal is to comprehensively defend SFRL models against semantic
degradations caused by adversarial attacks, which include: (1) struc-
tured distortions in key facial regions (e.g., subtle inter-ocular distance
shifts), and (2) imperceptible unstructured additive noise. These two
degradation forms jointly undermine the model’s ability to capture fine-
grained facial details and perform accurate discrimination. To provide
a theoretical foundation for this decomposition, we start with the math-
ematical definition of adversarial attacks. Mathematically, let F denote
a clean facial image, and F’ denote the attacked image:

F' =F +5, (€D)

where § represents the semantic degradation introduced by the adver-
sarial attack. Although adversarial attacks are crafted to mislead models,
their effect on images can be interpreted as a form of degradation, which
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Fig. 2. The training pipeline of our proposed DAR-SFRL. DAR-SFRL first summarizes the two types of subtle semantic degradation caused by adversarial attacks into

a unified degradation formula (F’

=F - M + ¢) that includes structured geometric distortion and unstructured additive noise, and then learns complex and diverse

degradation patterns through k stages of iterative refinement, gradually reducing the impact of degradation attacks. Each stage consists of Degradation-Adaptive Face
Restoration (DAFR) and Noise-Orthogonal Contrastive Learning (NOCL), where DAFR addresses the degradation matrix M from structured distortions and NOCL

further alleviate the influence of the additive noise ¢ from unstructured artifacts.

motivates the application of classical image degradation modeling [32]
to analyze and decompose adversarially attacked images. Accordingly,
we further decompose F’ as:

F'=F-M+e, 2

where M is a degradation matrix modeling structured distortions in key
facial regions, and ¢ is an unstructured additive noise component. From
the above, the semantic degradation introduced by the adversarial attack
can be equivalently expressed as:

§=F —F=M—-1)-F+e, 3
where [ is the identity matrix. This decomposition shows that 6 consists
of a structured distortion term (M — I) - F that affects essential facial
structures, and an unstructured additive noise term e.

Based explicitly on this unified degradation model Eq. (2), a straight-
forward goal of our DAR-SFRL is to recover the fine-grained details of F’
and make high-dimensional features of F/ and F as similar as possible
through a multi-stage reverse diffusion iterative optimization process,
thus enabling better resilience against the subtle semantic degradation
caused by adversarial attacks during inference. As mentioned previously,
to reverse the effects of the adversarial attack and make the attacked
image F’ close to the clean image F, we introduce two key strategies
in each stage of DAR-SFRL. Firstly, we attempt to progressively reverse
the degradation function and restore fine-grained image details. This
primarily corresponds to handling structural distortions in key facial re-
gions, which are controlled by the degradation matrix M in Eq. (2).
We term the related technique Degradation-Adaptive Face Restoration
(DAFR). Secondly, we devise a Noise-Orthogonal Contrastive Learning
(NOCL) scheme to further deal with the additive noise ¢ in Eq. (2). After
the restoration of clean facial image, we also obtain additive noise repre-
sentations decomposed from the features of the original attacked image.
We maximize the difference between this decomposed additive noise
representation and the restored facial features so that the final facial
features are better distinguished from noise representations. As a result,
through the multi-stage joint training of DAFR and NOCL, our approach
effectively alleviates the facial semantic degradation modeled by the

unified degradation function in Eq. (2). We will discuss more details
in the following sections.

3.2. Degradation-adaptive face restoration (DAFR)

SFRL generally shows poor robustness when faced with adversarial
attacks. A fundamental reason is their difficulty in handling structural
semantic distortions in key facial regions, which can be formalized using
a degradation matrix M in Eq. (2), as it directly impacts the integrity
of facial structural information. Therefore, we focus on mitigating the
impact of M, as defined in Eq. (2), which accounts for these structural
distortions. In our assumptions, adversarial attacks often cause varying
degrees of structural distortions to key facial regions in unpredictable
ways. These non-fixed, unpredictable degradation patterns make it dif-
ficult for us to construct comprehensive and appropriate M that covers
all potential cases. Unlike previous studies that only deal with fixed
degradation types, we treat M as a potential random variable and per-
form inference in a data-driven manner. To this end, we introduce
Bayes’ theorem [33] and try to model M pairs without strong prior as-
sumptions, gradually reversing the degradation function and recovering
fine-grained image details.

In particular, we infer the most likely clean image F from the ob-
served data (the attacked image F’) using the maximum a posteriori
(MAP) principle, aiming to maximize the posterior probability P(F|F’).
This results in our DAFR component, which models and reverses the
degradation function based on Bayes’ theorem. The DAFR treats the
attacked image F’ with structural distortion as an observable variable
and reverses the degradation process by recovering the clean image F.
More specifically, based on the MAP principle and the formulation of
Eq. (2), we can prove that maximizing the negative logarithmic trans-
formation of P(F|F’) is equivalent to solving the following non-convex
optimization problem:

argmin log P(F|F') = argmin |[F' — F - M|} + yt(F), @
F F

where |[F' - F - M ||§ represents the data fidelity term, which ensures
that the solution conforms to the degradation process, #(F) is a regu-
larization term approximating the prior distribution P(F) over clean
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facial representations. We adopt the L, norm for its edge-preserving and
sparsity-inducing properties, and y is a hyperparameter that weights the
regularization term #(F).

Directly solving Eq. (4) for the global optimal solution is non-trivial
because we assume that the degradation matrix M is unknown and
the data fidelity term in Eq. (4) is non-convex. To solve this prob-
lem, we attempt to apply Taylor’s expansion formula [34] with the
gradient descent algorithm to gradually approximate the local optimal
solution of Eq. (4). This approach reformulates the data fidelity term of
Eq. (4) as a solvable multi-stage iterative refinement process comprising
k stages. Accordingly, the update formula for the k-th stage of the above
optimization can be described as follows:

F® = argmin g(F* D) 4 L |F — F&=D)12
" 24 2
+(F = F&D Vg(F 1)) + yi(F), 5

where F® is the facial image restored at the k-th stage, g(F*D) =
| F" — F&=D . M]3, V represents the gradient operator, weighted by the
step size 4. Next, to make Eq. (5) even easier to solve, we follow the gra-
dient descent update rule to combine the quadratic and gradient terms
to simplify the expression and use the gradient information to update the
local optimal solution F®). Specifically, we simplify Eq. (5) as follows:

FO = argmin 2I[F = (F& = AVg(F* D) + y1(F). ®)
F

Then, to handle the non-differentiable regularization term #(F), we apply
the proximal operator [35] to Eq. (6) to adjust the solution during each
iteration to ensure that it stays within a reasonable range and satisfies
the regularization constraint. The updated form of Eq. (6) is as follows:

HOEFEED Fy = FED _aMT(FED . M — F), %)

F® = prox,, py(HW(F*D, Fy), ®

where H®O(F*=D F') is the conventional gradient descent update term
that adjusts the current solution to approximate the ideal restored im-
age. prox,,p)(-) represents the proximal operator corresponding to the
regularization term #(F). Through this proximal operation, the updated
solution is supposed to not only fit the data as closely as possible but
also ensure that the image restoration process adheres to the assumption
about prior probability P(F).

In practice, we implement this process as a learnable DNN. As
shown in Fig. 2, we combine Egs. (7) and (8) with a DNN to con-
struct a degradation-adaptive face restoration module (DAFR) at each
stage of DAR-SFRL, which learns to understand non-fixed, unpredictable
degradation patterns and simulates their impact on the clean image.

Based on the above derivations, our DAFR adopts a data-driven
strategy to approximate M and M7 in Eq. (7), using two independent
residual blocks CN N,(-) and its transpose CN N/() to model degrada-
tion and restoration operators. As shown in Fig. 3, CN N,.(-) and CN N/(-)
replace M and M” in Eq. (7), enabling a data-driven implementation of
Eq. (7). The updated form is as follows:

HOEFE*D Fy = F&D _ JcNNI(CNN,(F&D) - F). ©)

Next, directly deriving an explicit prox,,r)(-) of Eq. (8) is difficult
because the regularization term #(F) is usually nonlinear and non-
differentiable. Therefore, we employ numerical approximation methods
to approximate the proximal operator, utilizing DNNs to simulate the
operation and model the impact of structural distortions on clean data.
As shown in Fig. 3, by combining traditional optimization models with
data-driven strategies, the updated form of Eq. (8) is as follows, forming
the final update rule:

F® = CNN(CNN,,(CNN HOF* D Fy))
+ CNN HBOFD Fy) + HOFED F, (10)

N® = ' — pl0o, 11

where F® and N® represent the reconstructed image and the de-
coupled structured distortion produced by DAFR at the k-th stage of
DAR-SFRL, respectively. CN N, (-) represents a serialization module
consisting of a 3x3 convolutional layer, a PReLU activation function,
and a channel attention layer. CN N,(-) represents another 3x3 con-
volutional layer. Subsequently, to constrain the progressive refinement
process of DAFR, we employ the L, loss [36] to measure the consis-
tency between the recovered facial image and the original clean image.
Mathematically, the consistency loss is as follows:

L, =IIFO —Fl, (12)

where || - ||, represents the L, loss.

Through the above iterative optimization, DAFR gradually refines
the restored image by learning non-fixed, unpredictable degradation
patterns and applying consistency loss constraints, enabling the DAFR
network to robustly handle various structural distortions.

3.3. Noise-orthogonal contrastive learning (NOCL)

When facing semantic degradations caused by adversarial attacks,
SFRL must handle not only structural distortions but also unstructured
additive noise ¢ (as formulated in Eq. (2)). This noise, often entangled
with fine-grained facial semantics such as micro-expression features,
leads to latent-space interference that corrupts the learned identity
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representations and degrades robustness. To further address this, we in-
troduce Noise Orthogonal Contrastive Learning (NOCL) after DAFR at
each stage of DAR-SFRL.

As shown in Fig. 2, NOCL consists of three loss functions: noise-
orthogonal disentangling loss, face-robust contrastive loss, and noise-
sensitive contrastive loss. In our formulation, the additional noise intro-
duces subtle perturbations, making it difficult to directly remove it from
the corrupted image. We thus introduce the noise orthogonal disentan-
gling loss to separate unstructured additive noise from the reconstructed
images in the feature space, so that perturbations from ¢ can be better
exposed and eliminated after training. After separating the unstructured
additive noise, we further use the face-robust and noise-sensitive con-
trastive losses to learn the disentangled facial and noise features in their
respective feature spaces, separately. This decoupled learning strategy
enables each component to operate independently within its own feature
space, minimizing the unstructured semantic interference from vari-
ous potential unstructured additive noise patterns on the restored facial
features.

Noise-orthogonal Disentangling Loss: We first use a multilayer
perceptron to project the decoupled reconstruction image F® and de-
graded pattern N into high-dimensional feature spaces as f® =
MLP(F®), n® = MLP(N®), where M LP() represents a multilayer
perceptron consisting of two fully connected layers. Then, to further
separate unstructured additive noise, we aim to maximize the diver-
gence d*(f®, n®) between noise and reconstructed samples in the
high-dimensional feature space. Formally, d*(f®, n®¥) can be described
as follows:

d (fO.n ) = 1O - 2. 3

We can prove that maximizing the divergence d*(f®,n®) is approx-
imately equivalent to minimizing the orthogonality loss between f®)
and n®. To this end, we introduce a noise-orthogonal disentangling loss,
defined as follows:

R
1
Ly =g 2O 15 (14)
r=1

After separating the unstructured additive noise, we introduce face-
robust contrastive loss and noise-sensitive contrastive loss to ensure that
the model achieves high robustness in reconstructing facial features from
images while maintaining sensitivity to various types of unstructured
additive noise. The face-robust contrastive loss is designed to guide the
model in learning more robust facial features, minimizing the influence
of irrelevant information or disturbances. In contrast, the noise-sensitive
contrastive loss focuses on capturing the diversity of unstructured addi-
tive noise, further enhancing the model’s ability to distinguish between
unstructured additive noise and genuine facial features. Specifically,
we first apply stochastic data augmentation to transform any image F’
within the same batch, resulting in two correlated views of the same
face F; and Fj’ , and then select another image F, from the same batch.
Next, we feed F/, F]’ and F] into the DAFR, the multilayer perceptron,
and the noise-orthogonal disentangling loss, obtaining the restored facial
features f,.(k), f;k), and f Z(k), along with the unstructured additive noise

features nl(,k), n;k), and n(zk) at the k-th stage. Subsequently, we construct

positive and negative sample pairs based on these features to calculate
the face-robust contrastive loss and the noise-sensitive contrastive loss,
respectively.

Face-robust Contrastive Loss: We perform face-robust contrastive
learning on these face-only features f ,.(k), f;k), and f. Z(k) via the designed
face-robust contrastive loss. Specifically, we take the restored facial fea-
tures fl.(k) and f;k) of two related views of the same face image as positive
samples and maximize the similarity between them. Meanwhile, we treat
f Z(k) as a negative sample and minimize its similarity to the positive sam-
ples. Formally, the k-th stage of the face-robust contrastive loss can be
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written as:
I P R N (SR (5| RG]
L® O 0 Oy =1, 1+ 1,0, 1, (15)
( sim(r., )
exp(——————
(0, £ = —log . (16)

sim(f %1% ) '

21:1,[1#1‘] exl’( Z

where sim(-) is the cosine similarity of pairs. = is the temperature
parameter.
Noise-sensitive Contrastive Loss: We use the noise-sensitive con-

trastive loss designed for these unstructured additive noise features nl(.k),

n;.k), and n'® to perform noise-sensitive contrastive learning. In detail, we
treat the unstructured additive noise features nl(.k) and n® with the same
degradation pattern as positive samples and minimize the distance be-
tween them in the feature space. Meanwhile, we treat the noise feature
% with different degradation pattern as a negative sample and max-
imize the distance between it and the positive samples in the feature
space. Formally, the noise-sensitive contrastive loss at the k-th stage can

be written as:

n

KR 0 K )y g o0 K *) (k)
LoiseCy om0y = () + 1, mg ), 17)

noise

sim(nfk) ,n;k))

exp(———)
sim(ntk) ,n(zk)) ) ’

Zz:l.[z;&i] exl’( z

1,9, n9) = ~log (18)

where sim(-) is the cosine similarity of pairs. r is the temperature
parameter.

The combination of these loss functions provides a comprehensive
noise decoupling strategy that explicitly separates unstructured additive
noise from meaningful facial semantics in the latent space. By mitigating
noise-induced interference, this strategy enables the model to focus on
learning more robust and identity-preserving facial representations.

3.4. Overall learning objective

Overall, the proposed DAR-SFRL incorporates four types of objective
functions: consistency loss, noise orthogonal disentangling loss, face-
robust contrastive loss, and noise-sensitive contrastive loss. Therefore,

the total loss function L is the weighted sum of L), Li’;ih, L;’Z.M, and
k : .
L; 3“_, which can be given by:
K
— (k) (k) (k) (k)
L= z (Lmae + Larth +a, Lnoixe + r Lface)’ (19)
k=1

where K represents the total number of stages in DAR-SFRL. The pa-
rameters «, and «, are dynamic weights that adaptively balance the
learning objectives based on the contributions of noise sensitivity and
face sensitivity to face representation. Following prior work [22,37], we
use dynamic weight averaging to obtain @, and «, during training.

4. Experiment and analysis

To evaluate the robustness and generalizability of the proposed
model DAR-SFRL, we conduct experiments on face-related downstream
tasks, including Facial Expression Recognition (FER), Face Recognition
(FR), and AU detection. Compared to other self-supervised face rep-
resentation and defense methods, DAR-SFRL demonstrates impressive
robustness and generalizability to various adversarial attacks during the
inference phase. Finally, we perform ablation experiments to verify the
effectiveness of the proposed key modules.
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Fig. 4. The inference pipeline of our proposed DAR-SFRL. With the generate attacked samples as test data, we first use the pre-trained DAR-SFRL model to extract the
facial representation, then employ a simple liner classifier to perform three face-related downstream tasks (FER, FR, AU detection), thereby verifying the robustness

and generalization ability of DAR-SFRL.

4.1. Implementation details

Pre-training Phase: Our proposed model is implemented using the
PyTorch framework and trained for 1000 epochs with the Adam opti-
mizer (f1 = 0.9, and g2 = 0.999). The batch size and initial learning
rate are set to 256 and 0.0001, respectively. We utilize cosine anneal-
ing to decrease the learning rate, with the temperature parameter = set
to 0.07. All models are trained and tested on an NVIDIA GTX 3090
GPU. The training process follows the data augmentation techniques and
negative interpolation used in the baseline PCL [22].

Inference Phase: As shown in Fig. 4, to evaluate the robustness
and generalizability of DAR-SFRL, we employ seven different adversar-
ial attacks, including PGD [12], UPGD [27], BIM [11], MIFGSM [13],
EOTPGD [38], DIFGSM [4], and NIFGSM[28]. Each of these attack meth-
ods is used to generate a set of attacked samples, which serve as the test
datasets for evaluating our model’s performance under different attack
scenarios. Next, we use the pre-trained DAR-SFRL model to extract facial
representations of the attacked samples, and then train three simple lin-
ear classifiers to perform three face-related downstream tasks (FER, FR,
AU detection) respectively to verify the robustness and generalization
ability of DAR-SFRL.

4.2. Datasets

Pre-training Datasets: During the pre-training phase, the
VoxCelebl [39] and VoxCeleb2 [40] datasets introduce different
levels of noise disturbances to represent the diverse adversarial attack
patterns and are preprocessed using conventional data augmentation
methods. Additionally, the aforementioned datasets lack annotations.
They include a total of 299,085 video clips from approximately 7,000
speakers. Frames are extracted from the videos at a rate of 6 frames
per second, cropped to center the face, and resized to a resolution of
64x64.

Downstream Task Datasets: For FER evaluation, we used the RAF-
DB [41] dataset, which contains 12,271 training images and 3,068 test
images. For FR evaluation, we used the CPLFW [42] dataset, which in-
cludes 3,000 pairs of frontal images with pose differences. For facial
Action Unit (AU) detection, we used the BP4D [43] dataset, a sponta-
neous Facial Action Coding System (FACS) dataset containing 328 videos
from 41 subjects (18 males and 23 females).

4.3. Overall performance on face-related downstream tasks

4.3.1. Performance on FER
Comparison of SFRL Methods: Table 1 presents the performance
of different SFRL methods on the FER task under both clean (w/o

attack) and adversarial attack conditions. The results showed that DAR-
SFRL not only achieved competitive accuracy on clean samples but
also demonstrated strong robustness against subtle semantic degrada-
tions introduced by various adversarial attacks. Specifically, on clean
samples, DAR-SFRL achieved an accuracy of 67.14 %, ranking sec-
ond only to PCL [22], which indicates its competitive feature learning
capability in the absence of attacks. Furthermore, DAR-SFRL outper-
formed other methods when subjected to subtle semantic degradation
caused by seven different adversarial attacks. For instance, under the
NIFGSM [28] attack, DAR-SFRL maintained an accuracy of 66.33 %,
reflecting only a 0.81 % drop compared to the clean condition. In
comparison, the accuracy of PCL dropped from 67.66 % to 59.32 %,
corresponding to an 8.34 % decline. This stark difference highlighted
the superior capability of DAR-SFRL in simultaneously addressing both
types of degradation, whereas other methods such as SimCLR[44] and
MoCo [45] showed much greater performance drops (32.49 % and
15.12 %, respectively) under similar conditions. Overall, DAR-SFRL ex-
hibited stronger robustness against semantic degradations than other
SFRL methods.

Comparison of Defense Methods: Table 1 also reports the perfor-
mance of DAR-SFRL and existing adversarial defense methods on the
FER task, including RoCL [5], ACL [6], and the supervised method
TRADES [46], all of which enhance model robustness through PGD-
based adversarial training. In addition, DiffPure [7] separates the in-
terference of adversarial attacks through adversarial purification. The
results demonstrate that DAR-SFRL outperforms these methods on clean
samples (w/o attack), achieving an accuracy of 67.14 %, significantly
higher than RoCL, ACL, and TRADES. Under adversarial attacks, DAR-
SFRL consistently achieves higher accuracy than all comparison meth-
ods. For instance, under the UPGD [27] attack, DAR-SFRL maintains an
accuracy of 66.62 %, reflecting only a 0.52 % drop. Meanwhile, DiffPure,
RoCL, ACL, and TRADES achieve accuracies of 47.04 %, 43.48 %,
15.48 %, and 37.32 %, corresponding to declines of 4.30 %, 11.61 %,
32.73 %, and 5.41 %, respectively, from their performance under clean
conditions.

In summary, these results highlight the superior capability of DAR-
SFRL in defending against semantic degradations introduced by adver-
sarial attacks. Unlike existing methods that handle only one type of
degradation when faced with such compound perturbations, DAR-SFRL
offers a unified solution that addresses both, providing better protection
in real-world scenarios.

4.3.2. Performance on FR
Comparison of SFRL Methods: Table 2 presents the performance of
various SFRL methods on the FR task under both clean (w/o attack) and
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adversarial attack conditions. As a continuation of the FER evaluation,
this task serves as a cross-task validation of DAR-SFRL’s generalizability
in face-related scenarios. In contrast to FER, which requires fine-grained
sensitivity to facial expression variations, FR focuses on preserving
identity-related features under semantic degradations. From the results,
DAR-SFRL not only exhibits strong robustness in preserving identity con-
sistency under clean conditions but also demonstrates high resistance to
subtle semantic degradations caused by adversarial attacks.

In detail, DAR-SFRL achieved an accuracy of 63.61 % under clean
conditions, which demonstrates its effective learning of identity rep-
resentations. Under the BIM [11] attack, its performance slightly de-
creased to 62.97 %, with a minimal drop of only 0.64 %. Similarly,
DAR-SFRL maintained stable performance when subjected to PGD [12],
EOTPGD [38], and NIFGSM [28] attacks, with accuracy consistently
close to 63.61 %. In contrast, the performance of other SFRL models
showed more substantial declines. For instance, PCL [22], SimCLR [44],
and FRA [23] experienced accuracy drops of 7.59 %, 14.24 %, and
3.79 %, respectively. MoCo [45] and FaceCycle [14] also saw perfor-
mance reductions of 7.78 % and 2.81 %, respectively.

Comparison of Defense Methods: Next, we also reported the per-
formance of DAR-SFRL and existing adversarial defense methods on
the FR task in Table 2. The results indicated that existing defense
methods such as DiffPure [7], RoCL [5], ACL [6], and the super-
vised method TRADES [46] struggled to effectively handle the semantic
degradations caused by adversarial attacks, which limited their overall
robustness. In contrast, DAR-SFRL was explicitly designed to simulta-
neously address semantic degradations, allowing it to preserve identity
consistency even under adversarial attack conditions. For example, un-
der the UPGD [27] attack, DAR-SFRL experienced only a 0.95 % drop
in accuracy, demonstrating superior capability in preserving identity-
relevant features compared to DiffPure, RoCL, ACL, and TRADES. By
contrast, these methods suffered significantly larger drops in accuracy,
ranging from 2.93 % to 4.11 %.

Overall, these performance advantages underscore DAR-SFRL’s
stronger adaptability to semantic degradations caused by adversarial
attacks, making it a more robust and reliable solution for face recog-
nition and significantly enhancing the overall security and stability of
face recognition systems.

4.3.3. Performance on facial AU detection

Comparison of SFRL Methods: Table 3 compares the performance
of different SFRL methods on the facial AU task under both clean and
adversarial conditions. Unlike FER and FR tasks, AU detection requires
finer recognition of facial actions, making it more vulnerable to small
structural distortions and noise, which can lead to missed or incorrect
detections. This high precision demand makes AU detection particularly
sensitive to semantic degradations caused by adversarial attacks. The
results in Table 3 show that DAR-SFRL exhibited remarkable robust-
ness, maintaining strong performance even under the subtle semantic
degradations induced by adversarial attacks. Specifically, under the
UPGD [27] attack, DAR-SFRL achieved an F1 score of 51.20, reflect-
ing only a 1.47 drop compared to the clean condition. When subjected
to other attacks such as PGD [12], BIM [11], and MIFGSM [13], the de-
clines in F1 score remained within the narrow range of 0.97 to 1.17,
indicating a high level of overall performance stability. In contrast,
the performance degradation of other SFRL methods was significantly
more pronounced. Under the UPGD attack, the F1 scores of PCL [22],
SimCLR [44], FRA [23], MoCo [45], and FaceCycle [14] dropped
by 5.50, 7.12, 1.95, 7.33, and 5.78 points, respectively—substantially
higher than the 1.47 drop observed for DAR-SFRL. Similar trends were
observed under other adversarial attacks, further confirming that DAR-
SFRL demonstrates superior robustness against semantic degradations
compared to existing SFRL methods.

Comparison of Defense Methods: Next, we also compared the perfor-
mance of DAR-SFRL with existing adversarial defense methods (such as
RoCL [5], ACL [6], and TRADES [46]) on the facial AU detection task in
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Table 3. The results indicate that these defense methods, which relied on
supervised adversarial training to enhance model stability under attacks,
typically fail to effectively handle the semantic degradations caused
by adversarial attacks. However, in AU detection, structural distortions
and localized noise often occur simultaneously, forming compound at-
tacks that limit the robustness of these methods. In contrast, DAR-SFRL
achieved stronger generalization robustness by jointly modeling the se-
mantic degradations introduced by adversarial attacks. For example,
under the UPGD [27] attack, DAR-SFRL achieved an F1 score of 51.20,
representing only a 1.47 drop from the clean condition. This was sig-
nificantly better than the performance losses observed for RoCL (2.12),
ACL (1.57), and TRADES (2.43). In summary, DAR-SFRL demonstrated
exceptional robustness against the semantic degradations introduced by
various adversarial attacks in AU detection tasks. It effectively identified
and resisted adversarial interference, ensuring the accuracy and stability
of AU detection under various challenging conditions.

4.4. Ablation study

4.4.1. Effect of DAFR and NOCL

Table 4 examines the effects of each component of DAR-SFRL on
FER task performance, with a focus on robustness under both clean
and adversarial conditions. The results indicated that, for the FER
task, DAFR and NOCL modules played a crucial role in detecting sub-
tle facial expression variations under adversarial attacks and ensuring
the model’s robustness. When DAFR was removed, the robustness of
DAR-SFRL(C) significantly decreased under attacks, especially under
PGD [12], BIM [11], and EOTPGD [38], with accuracy drops of 7.27 %,
9.65 %, and 9.42 %, respectively, compared to the full model DAR-
SFRL. This highlighted the critical role of DAFR in reversing semantic
degradation and preserving fine-grained facial semantics. In contrast,
when NOCL was removed, DAR-SFRL(B) showed significant perfor-
mance degradation both under clean and adversarial conditions, with
accuracy dropping by over 1 %, which was greater than the accuracy
drop of the full model DAR-SFRL. This emphasized the importance of
NOCL in mitigating the interference of unstructured noise and maintain-
ing discriminative features. These results suggest that DAFR and NOCL
are key components in the robustness and performance of the DAR-SFRL
model.

4.4.2. Effect of various M architectures in DAFR

Table 5 explores the impact of different designs of degradation matrix
M in DAFR on the model performance. Given that adversarial attacks
introduce unpredictable structural distortions, conventional fixed-form
degradation matrices are insufficient to capture such variability. To ad-
dress this, we designed M as a learnable, lightweight neural module
that adaptively models the structural degradation induced by attacks.
We evaluated several representative lightweight DNN architectures: (i)
a CNN consisting of two 3 x 3 convolutional layers, each followed by
ReLU and BatchNorm; (ii) a ResNet composed of two basic residual
blocks with skip connections, each block containing two convolutional
layers; (iii) a LSTM with two layers and a hidden dimension of 256;
and (iv) a Transformer with two standard blocks, each equipped with 4
attention heads and a hidden dimension of 256. The results revealed sub-
stantial differences in these architectures’ abilities to simulate structural
semantic degradation and recover fine-grained details under adversar-
ial attacks. Specifically, while CNNs are effective at modeling local
spatial features, they are limited in capturing global context, which
resulted in a 2.28 % accuracy drop in clean conditions compared to
ResNet. The LSTM, though suitable for sequential modeling, is less ca-
pable of preserving spatial structure in images, which led to reduced
robustness and accuracy drops ranging from 0.82 % to 2.32 % under
attacks. Transformers achieved the highest accuracy (68.34 %) in clean
conditions, with accuracy drops ranging from 2.01 % to 2.45 %. In con-
trast, ResNet struck a better balance between clean performance and
robustness. Benefiting from its skip connection mechanism, it facilitated
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Table 5

Performance of different degradation matrices M in DAFR for the FER task on the RAF-DB dataset.

Adversarial Attacks

PGD [12]

w/o Attacks

Methods

MIFGSM [13] EOTPGD [38] DIFGSM [4] NIFGSM[28]

BIM [11]

UPGD [27]

Drop Acc(]) Acc(1) Drop Acc(]) Acc(1) Drop Acc(l) Acc(1) Drop Acc(l) Acc(?) Drop Acc(]) Acc(1) Drop Acc(]) Acc(1) Drop Acc({)

Acc(1)

Acc(1)

0.81
0.

66.33

0.84
0.

66.30

0.91
0.36

2.

66.23
64.50
61.21
65.89

0.52
0.26

2.

66.62

0.27

66.87

0.52
0.

66.62
64.66
61.11

0.91
0.32

2.

66.23
64.54
61.21

67.14
66.07

ResNet
CNN

33

64.53

45
66

64.41

64.60
61.28

66.33

0.42
2.15

2.

64.44
61.28

66.14

20
32
13

64.86
63.43

0.82
2.

62.61

1.

61.77
65.99

22

15

2.

22

LSTM

15

66.19

2.45 235

2.01

20

2.

66.21

227

68.34

Transformer

11

Neurocomputing 655 (2025) 131356

effective information flow and retention throughout the network, en-
abling more stable recovery of fine-grained semantic details and more
robust performance under diverse attack scenarios.

4.4.3. Effect of various losses in NOCL

Table 6 presents the impact of various loss functions in NOCL
on model performance. NOCL consists of the noise-orthogonal disen-
tangling loss (L,,;), the noise-sensitive contrastive loss (L,,;.), and
the facial-robust contrastive loss (L ,.), and it is designed to miti-
gate semantic degradation caused by adversarial attacks, particularly
non-structural additive noise. We conducted ablation experiments by
progressively removing L,.;, Ly, and L,,,. The results demon-
strated that these loss functions significantly affected the accuracy and
robustness of DAR-SFRL under both clean and adversarial conditions,
indicating that these losses play critical roles in enhancing the model’s
overall defense capability. Specifically, DAR-SFRL(a), which removed
L, resulted in a 2.6 % accuracy drop under clean conditions com-
pared to the complete DAR-SFRL. Under adversarial attacks, its accuracy
further decreased by 2.19 % to 3.49 % relative to its own accuracy
in clean conditions. Building upon this, DAR-SFRL(b), which further
removed L,., exhibited a substantial 11.02 % accuracy decrease in
clean conditions compared to DAR-SFRL(a), while the drop under ad-
versarial attacks was relatively small—only 0.58 % to 1.05 %. Finally,
DAR-SFRL(c), which removed all three losses, showed an additional
2.64 % accuracy drop in clean conditions compared to DAR-SFRL(b).
Under adversarial conditions, its accuracy declined by 1.11 % to 1.27 %,
which was greater than the drop observed in DAR-SFRL(b). In summary,
the performance comparison between DAR-SFRL and its three ablated
variants under both clean and adversarial conditions demonstrates that
each loss component in NOCL plays a distinct role in robustness model-
ing. Their joint design and complementary effects enable the model to
achieve a well-balanced trade-off between robustness and accuracy in
challenging environments.

4.4.4. Effect of iteration count k

Table 7 presents the effect of varying the number of reverse diffu-
sion iterations k on model performance. Without adversarial attacks,
setting k = 3 achieved the highest accuracy (67.14 %), which was
5.15 %, 2.24 %, and 7.00 % higher than those obtained with k = 2,
4, and 35, respectively. These results suggest that a moderate itera-
tion depth provides the best trade-off between semantic recovery and
noise amplification. Under adversarial attacks, the influence of k is less
pronounced. Once key semantic cues are sufficiently restored, further
refinement yields diminishing returns in robustness. Based on these
findings, we adopt k = 3 as the default setting throughout our exper-
iments. This choice balances efficiency and representational fidelity,
while promoting stable training and generalization across tasks.

4.4.5. Complexity analysis

Table 8 provides a computational complexity comparison of our
DAR-SFRL and current defense attack methods. From the table, DAR-
SFRL significantly outperforms the supervised TRADES [46] and self-
supervised ACL [6] and RoCL [5] in inference time (5.97 s), FLOPs
(0.04 G), and parameter size (0.03 M). Specifically, ACL and RoCL
rely on adversarial training, which requires the continual genera-
tion of adversarial samples during training to enhance robustness.
This mechanism drives the model architecture toward larger capac-
ity to accommodate increasingly complex adversarial perturbations.
Although adversarial sample generation is confined to the training
phase, the resulting increase in model complexity still imposes a sub-
stantial computational burden during inference, with ACL and RoCL
incurring inference times of 14.57 and 13.10 s and FLOPs of 1.34 G
and 0.56 G, respectively. Moreover, the parameter counts of TRADES,
ACL, and RoCL all approach 11 M, further increasing storage and
memory demands. In contrast, DAR-SFRL eliminates the need for ad-
versarial training and adopts a lightweight self-supervised framework
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Table 8
Computational complexity comparison of our DAR-SFRL and current
defense attack methods.

Methods TRADES [46] ACL [6] RoCL [5] DAR-SFRL
Inference time 10.02 s 14.57 s 13.10s 5.97s
FLoPs 0.74 G 1.34G 0.56 G 0.04 G
Params. 11.30 M 11.30 M 11.17 M 0.03 M

enhanced by degradation-adaptive modeling, which ensures robustness
while significantly reducing inference cost and model size. These ad-
vantages demonstrate DAR-SFRL’s superior computational and resource
efficiency.

4.5. Visualization

4.5.1. Visualization of DAFR and NOCL impact on feature distribution

Fig. 5 presents T-SNE visualizations of the feature space on the FER
task, offering a qualitative perspective on how DAFR and NOCL con-
tribute to the robustness of DAR-SFRL. Compared to the quantitative
ablation analysis in Section 4.4.1, this analysis intuitively demonstrates
the impact of each component on the distribution of emotion cate-
gories under adversarial conditions. As shown in Fig. 5, under the
PGD attack, the sequential integration of NOCL and DAFR progres-
sively improves the separation of emotion categories in the feature
space. Specifically, Fig. 5(a) shows the baseline configuration without
either module, where substantial category overlap and scattered feature
points are evident. Fig. 5(b) and (c) demonstrate that introducing either
NOCL or DAFR individually helps partially restore feature compactness
and class boundaries. Notably, Fig. 5(d) reveals that the combined use
of both modules leads to clearer separation among categories such as
”Surprise,” "Neutral,” and “Happiness,” effectively minimizing overlap.
These visual patterns serve as qualitative evidence that DAFR and NOCL
collaboratively enhance adversarial robustness by mitigating semantic
degradation and suppressing noise-induced feature distortion.

4.5.2. Visualization of per category performance using confusion
matrix

Fig. 6 visualizes the classification results of various SFRL methods
under PGD [12] attacks using confusion matrices. As shown, DAR-SFRL
maintains relatively stable and balanced performance across all emo-
tion categories. In contrast, methods such as PCL [22], SimCLR [44],
and MoCo [45] exhibit more severe misclassification patterns under the
same adversarial conditions. Specifically, DAR-SFRL surpasses PCL by
an average of approximately 15 % in six emotion categories, excluding
“Surprise.” While SimCLR performs slightly better than DAR-SFRL on
the “Disgust” category, it suffers substantial performance drops in oth-
ers, such as “Fear,” where the accuracy gap reaches up to 47 %. MoCo is
particularly vulnerable, trailing behind DAR-SFRL in most categories ex-
cept “Neutral.” These confusion matrix visualizations provide intuitive
evidence of classification biases across different emotion categories, of-
fering insights into each model’s prediction weaknesses and potential
areas for improvement under adversarial conditions.
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Fig. 6. The confusion matrix of DAR-SFRL and other SFRL methods on FER task
under the PGD attack. The horizontal and vertical axes represent the predicted
and true labels, respectively. The axis values correspond to the following emo-
tions: 0: Surprise, 1: Fear, 2: Disgust, 3: Happiness, 4: Sadness, 5: Anger, 6:
Neutral.

4.5.3. Visualization of feature distribution under structured and
unstructured noise

Fig. 7 visualizes the distributions of original feature without attacks
and the attacked feature using Kernel Density Estimation (KDE), aiming
to assess the specific impact of structured distortion and unstructured
noise introduced by adversarial attacks on the high-dimensional feature
space. By comparing different variants of the DAR-SFRL model (with or
without DAFR and NOCL), we intuitively analyzed the effect of these
two types of semantic degradation on feature consistency. As shown
in Fig. 7(a), the Baseline model did not incorporate either DAFR or
NOCL, making it difficult to handle the structured distortion and un-
structured noise introduced by adversarial attacks, resulting in a low
overlap score (0.5357) between original feature without attacks and the
attacked feature, indicating a significant feature shift. Considering that
DAFR and NOCL are specifically designed to address structured distor-
tion and unstructured noise respectively, Fig. 7(b) and (c) further present
the performance of models incorporating only NOCL and only DAFR.
The results showed that both types of semantic degradation introduced
by adversarial attacks severely affect feature consistency: when only
NOCL was used, only unstructured noise was mitigated with an overlap
area of 0.7204; when only DAFR was applied, only structured distortion
was resolved with an overlap area of 0.9476. In contrast, the complete
DAR-SFRL model in Fig. 7(d), which integrated both DAFR and NOCL,
achieved the highest feature overlap (0.9849), effectively aligning the
original feature without attacks and the attacked feature. In summary,

O Surprise @ Happiness © Neutral

Ceeg e

(a) Baseline (b) Baseline + NOCL

(c) Baseline + DAFR (d) DAR-SFRL (Our)

Fig. 5. Feature distribution visualization for the FER task using DAR-SFRL with and without DAFR and NOCL on the RAF-DB dataset.
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Fig. 7. Visualization of the data distribution relationships among the attacked feature, original feature without attacks, and their overlapping regions using kernel
density estimation. Each subfigure corresponds to a variant of DAR-SFRL: (a) Baseline (both noises not handled), (b) + NOCL only (handles unstructured noise), (c)
+DAFR only (handles structured distortion), and (d) full DAR-SFRL (handles both). Overlap scores are provided to quantify distribution similarity.
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(b) Facial Recognition Task

Fig. 8. Comparison of prediction probability scores on the baseline and our method under attacks. The values under the face images represent the prediction probability
to the truth category. The " and x symbols indicate the correct and wrong identification for the ground truth when under attacks, respectively.

these KDE visualizations clearly verify the effectiveness of DAR-SFRL
in mitigating both structured and unstructured semantic degradation,
and further reveal the independent and synergistic contributions of its
components to enhancing feature robustness.

4.5.4. Visualization of prediction probability scores under adversarial

attacks
Fig. 8 illustrates the model’s robustness to adversarial attacks from

the perspective of output probability scores in face-related downstream
tasks. We fed both unattacked and adversarially perturbed samples into

the Baseline and DAR-SFRL models for the FER and FR tasks, respec-
tively. The visualization results show that the Baseline model exhibits
significant fluctuations in predicted probability scores when exposed to
adversarial attacks, often resulting in incorrect predictions or low con-
fidence. In contrast, the DAR-SFRL model consistently maintains high
confidence in the correct labels for both clean and attacked samples,
demonstrating strong robustness to adversarial perturbations. Together
with the findings in Section 4.5.3, these results further confirm that DAR-
SFRL not only stabilizes feature-level representations but also improves
the reliability of task-level decisions under adversarial attacks.

14



K. Wang, Y. Liu, C. Tang et al.

5. Conclusion

In this paper, we propose a novel framework, Degradation-based
Attack-Robust Self-supervised Face Representation Learning (DAR-
SFRL), which is designed to address the challenges posed by adversarial
attacks on clean facial data. This method interprets adversarial attacks
from the perspective of facial semantic degradation, and models the re-
sulting subtle degradations as a composite degradation function that
incorporates both structured geometric distortions and unstructured
additive noise. Theoretically, this formulation enables a comprehen-
sive and targeted defense against adversarial attacks. To systematically
address these two components, we introduce two key modules in
DAR-SFRL: Degradation-Adaptive Face Recovery (DAFR) and Noise-
Orthogonal Contrastive Learning (NOCL). DAFR utilizes maximum a
posteriori (MAP) estimation to progressively reverse the degradation
function and recover fine-grained image details. It accurately models the
relationship between degradation patterns and clean data and learns dif-
ferent degradation patterns during the gradual disentangling process.To
further enhance robustness, NOCL incorporates a noise-orthogonal dis-
entangling loss, a facial-robust contrastive loss, and a noise-sensitive
contrastive loss. This ensures that the model not only discriminates be-
tween the additive noise of adversarial attacks and clean images but
also generalizes well to various adversarial attacks. Through the syn-
ergistic training of DAFR and NOCL, DAR-SFRL effectively captures the
perturbations caused by adversarial attacks, enabling a more precise un-
derstanding of adversarial attack patterns. This enhances the robustness
of DAR-SFRL in face-related tasks, providing greater resilience against
various adversarial attacks during inference. Despite the effectiveness of
our approach, we find that DAR-SFRL still has some room for improve-
ment. At present, the model lacks learning of the degradation process,
which introduces uncertainty in the progressive recovery process. In fu-
ture work, we plan to build a degradation-recovery framework based
on physical information to provide richer and more comprehensive fea-
ture information for self-supervised face representation tasks in open
environments.
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