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H I G H L I G H T S

∙ We propose DAR-SFRL, a novel 

degradation-adaptive SFRL method via 

reverse diffusion.

∙ DAFR models and inverts structured 

degradation using Bayesian theory and 

Taylor expansion.

∙ NOCL disentangles unstructured noise 

with three tailored contrastive learning 

losses.

∙ DAR-SFRL integrates semantic recovery 

and robustness learning in a unified 

framework.

∙ DAR-SFRL improves adversarial robust-

ness by up to 96.98 % across multiple 

face tasks.
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A B S T R A C T

Self-supervised face representation learning (SFRL) shows strong potential for scalable face-related applications, 

yet remains vulnerable to adversarial attacks that cause dual facial semantic degradations, namely (1) structured 

distortions in key facial regions (e.g., subtle inter-ocular distance shifts) that disrupt identity-related features, 

and (2) unstructured additive noise (e.g., illumination artifacts) that entangles with face-related features in la-

tent space. Existing defense methods struggle to deal with both facial semantic degradations in SFRL, resulting 

in limited robustness. To address this, inspired by existing reverse Diffusion approaches that effectively tackle 

the image denoising, we propose DAR-SFRL, a novel Degradation-adaptive Attack-Robust Self-supervised Face 

Representation Learning framework. DAR-SFRL models adversarial attacks as a degradation-based function com-

posed of geometric distortions and additive noise, applying a multi-stage reverse Diffusion iterative process 

to recover facial semantics. At each stage of the process, DAR-SFRL employs: (1) an adaptive degraded-face 

restoration method that progressively reverses the degradation function and recovers fine-grained details from 

structured distortions, and (2) a noise-orthogonal contrastive learning mechanism to mitigate the impact of un-

structured additive noise by maximizing the dissimilarity between noisy and clean image features in the latent 

space. Extensive experiments across tasks—including face recognition, facial expression recognition, and facial ac-

tion unit detection—demonstrate that DAR-SFRL significantly outperforms state-of-the-art defenses under various 

adversarial attacks, highlighting its robustness and generalization in real-world face-aware applications. Our 

evaluation code is available at https://github.com/23wk/DAR-SFRL
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1. Introduction

Learning facial representations is an important task in computer vi-

sion, which is widely applied in various face-related tasks, such as Face 

Recognition (FR), Face Emotion Recognition (FER), Human-Computer 

Interaction (HCI), Financial Security (FS), and Medical Diagnosis (MD). 

Although supervised learning has helped deep neural networks achieve 

promising facial understanding results, it heavily relies on large-scale an-

notations which require substantial labor costs. Recently, self-supervised 

facial representation learning (SFRL) has emerged as a promising al-

ternative without overly relying on large-scale manual annotations. By 

learning from self-generated labels, SFRL enables effective utilization 

of vast unlabeled data, generating effective face-related models that are 

scalable for large-scale applications [1,2]. However, existing SFRL meth-

ods are often vulnerable to the threat of adversarial attacks in real-world 

scenarios, resulting in limited robustness in real-world face-related ap-

plications. Therefore, developing a robust SFRL method against various 

adversarial attacks remains a key and pressing research challenge.

To deal with adversarial attacks, current research has explored two 

primary defense methods for general image representation: adversarial 

training and adversarial purification [3,4]. Adversarial training methods 

improve robustness by incorporating adversarial disturbances directly 

during training. For example, Kim et al. [5] utilized unlabeled data for 

adversarial training and tried to defend against attacks by maximizing 

the similarity between randomly augmented samples and their adver-

sarially perturbed counterparts at the instance level. Jiang et al. [6] 

combined self-supervised contrastive learning with adversarial training 

thereby improving the robustness of the model against introduced adver-

sarial attacks during training. Adversarial purification-based methods 

aim to restore attacked images before inference, typically using gen-

erative priors or scoring functions. Nie et al. [7] relied on finding the 

optimal time step in the forward process of the diffusion model to un-

cover data from adversarial disturbances. Yong et al. [8] proposed a 

scoring function to distinguish attacks from clean data.

Despite the progress in general image representation tasks, we find 

that both defense paradigms face inherent limitations in dealing with 

SFRL [9,10]. Adversarial training methods primarily optimize for global 

feature robustness by augmenting the training set with adversarial 

examples and do not explicitly model or correct localized geometric dis-

tortions at key facial landmarks. As a result, the learned representations 

remain vulnerable to subtle structural degradations, especially in regions 

critical for identity and expression modeling. Adversarial purification 

methods typically perform denoising in the pixel domain and lack mech-

anisms to disentangle noise from meaningful semantics within the latent 

space. This limitation is particularly pronounced when noise is entangled 

with legitimate facial features such as texture or illumination, making 

it difficult to recover fine-grained, structurally relevant identity infor-

mation. Compared to generalized image representation learning, SFRL 

heavily relies on fine-grained facial structures and subtle semantic cues 

to support downstream applications like identity recognition and emo-

tion perception. However, under various adversarial attacks (e.g., FGSM 

[11], PGD [12], and MIFGSM [13] ), these delicate facial semantics are 

easily disrupted, resulting in significant degradation in discriminative 

performance.

As shown in Fig. 1, our analysis reveals two primary degradation 

patterns in SFRL attacks: (1) Structural Semantic Degradation, where 

adversarial perturbations disrupt key facial regions, such as the inte-

rocular distance, nose bridge, and mouth corners, thereby impairing 

the extraction of identity-relevant structural cues; and (2) Unstructured 

Additive Noise, where high-frequency noise entangles with genuine

semantic features (e.g., illumination artifacts) that entangle with face

related features in latent space. Existing adversarial training and ad

versarial purification methods typically focus on either global feature

-

-

robustness or pixel-level denoising, making it challenging to simulta-

neously address these intertwined, fine-grained degradations. This gap 

fundamentally limits their effectiveness in defending against semantic 

degradation in facial representation learning.

To overcome these limitations, recent work has explored reverse dif-

fusion for denoising via iterative refinement, leveraging diffusion models 

to reconstruct high-fidelity images from adversarial inputs [7]. Building 

on this, we propose Degradation-Adaptive Attack-Robust Self-supervised 

Face Learning, i.e., DAR-SFRL, a multi-stage reverse diffusion frame-

work that models both structural semantic degradation and unstructured 

noise as a unified degradation function, enabling targeted and robust 

defense against face adversarial attacks in SFRL. Fig. 1 shows a brief 

motivation for our approach, and Fig. 2 presents a training pipeline 

of our approach for attack-robust SFRL. Specifically, we introduce two 

key modules at each stage of DAR-SFRL: Degradation-Adaptive Face 

Recovery (DAFR) and Noise-Orthogonal Contrastive Learning (NOCL). 

First, DAFR employs a maximum a posteriori (MAP) strategy to progres-

sively reverse the degradation function and recover fine-grained details 

from structured distortions. Then, NOCL comprises a noise orthogonal 

disentangling loss, a facial-robust contrastive loss, and a noise-sensitive 

contrastive loss, to mitigate the impact of unstructured additive noise 

by maximizing the dissimilarity between noisy and clean image features 

in the latent space. Through the multi-stage collaborative training of 

DAFR and NOCL in DAR-SFRL, we effectively capture the facial semantic 

degradation caused by face adversarial attacks, enabling a more precise 

understanding of adversarial attack patterns in SFRL. This enhances the 

robustness of DAR-SFRL in several face-related downstream tasks.

In summary, the main contributions of this paper are as follows:

(1) We propose a novel Degradation-adaptive Attack-Robust SFRL

method in a multi-stage reverse diffusion learning manner, termed 

DAR-SFRL, which aims to effectively address the facial semantic 

degradation caused by adversarial attacks for obtaining attack-

robust SFRL. To achieve this, we introduce two key modules in 

each stage of DAR-SFRL: Degradation-Adaptive Face Recovery 

(DAFR) and Noise Orthogonal Contrastive Learning (NOCL), to 

formulate semantic degradations caused by face adversarial at-

tacks.

(2) We propose the DAFR component, which adaptively simulates and

reverses facial semantic degradation to recover fine-grained de-

tails from structured distortions. In DAFR, we introduce Bayesian 

theory and Taylor expansion to iteratively approximate the op-

timal degradation process, capturing the relationship between 

degraded and clean images to effectively disentangle different 

structured degradation patterns.

(3) We devise a novel NOCL to further mitigate the impact of unstruc-

tured additive noise using three loss functions: noise-orthogonal 

disentangling loss, face-robust contrastive loss, and noise-sensitive 

contrastive loss. By learning in appropriate feature spaces, NOCL 

effectively decouples unstructured additive noise from face adver-

sarial attacks by maximizing the dissimilarity between noisy and 

clean image features in the latent space.

(4) We evaluated the performance of DAR-SFRL on several face-

related downstream tasks, including facial expression recognition 

(FER), face recognition (FR), and facial action unit detection 

(FAU). Extensive results show that DAR-SFRL outperforms existing 

methods in defending against seven types of face adversarial at-

tacks during inference. For example, under the UPGD attack in the 

FER task, the baseline’s performance dropped by 17.15 %, while 

DAR-SFRL’s dropped by only 0.52 %, offering a 96.98 % relative 

improvement. These results demonstrate DAR-SFRL’s effective-

ness in enhancing robustness for face-related tasks in real-world 

scenarios.
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Fig. 1. The intuitive motivation of our method. Various adversarial attacks introduce subtle semantic degradations (Deg.) in facial data, which contains: (1) structured 

distortion of key facial regions, and (2) unstructured additive noise that disrupts face-related features in latent space. Existing SFRL methods lack a targeted and 

holistic learning strategy to defend against such adversarial perturbations, resulting in significantly degraded performance in several downstream face tasks.

2. Related work 

2.1. Self-supervised facial representation learning

Self-supervised learning has shown a wide range of application 

prospects in the field of facial representation learning [14–18]. For 

example, He et al. [19] enhance face recognition by self-supervised 

3D reconstruction. MAE [20] introduces a non-trivial and meaning-

ful self-supervised task by masking large portions of random blocks in 

the input image and reconstructing the missing pixels. MCF [21] uti-

lizes image-level contrastive learning and masked image modeling, as 

well as facial representation learning knowledge extracted from pre-

trained models of external image networks. PCL [22] decouples the 

facial and pose features, and then conducts comparative learning on 

these features, achieving strong performance on both pose and facial 

analysis tasks. FRA [23] proposes a new self-supervised face repre-

sentation learning framework to learn consistent global and local face 

representations. Although some progress has been made, most of the 

existing work is based on learning facial representations in pre-trained 

”black box” networks. This opaque working mechanism makes them vul-

nerable to attacked samples, that is, attackers can use attacked samples 

to specifically corrupt highly personalized and sensitive facial features. 

Misleading the network to learn incorrect features to fool the face recog-

nition system leads to face information leakage, leaving a huge security 

risk.

To provide a more comprehensive context, recent surveys offer valu-

able overviews of self-supervised learning. Liu et al. [24] categorize SSL 

methods into generative, contrastive, and hybrid types, outlining their 

theoretical principles and practical applications. Balestriero et al. [25] 

provide practical training recipes and conceptual insights, calling SSL 

the “dark matter of intelligence” for its hidden complexity and power. 

Gui et al. [26] highlight current challenges, such as robustness and scal-

ability, which are critical for advancing SSL. These reviews collectively 

establish a foundational understanding that informs the design of more 

robust and interpretable self-supervised facial representation models.

2.2. Adversarial defense

Adversarial attacks involve adding small, carefully designed dis-

turbances to the original input data, which are difficult for humans 

to detect, leading to attacked samples [4,27,28]. These samples cause 

deep neural networks to make incorrect predictions in tasks like fa-

cial recognition and image classification. To counter this, researchers 

have developed various defense methods [5–7] to enhance model ro-

bustness and accuracy.For example, Chen et al. [29] used the improved 

FGSM to generate attacked samples for adversarial search, and em-

ployed a reconstructor to help the classifier learn key features under 

disturbances. Wang et al. [30] mapped attacked samples back to clean

sample manifolds through an image-to-image generator, enhanced sam-

ple complexity, and integrated adversarial training into the GAN process 

to eliminate the problem of confusing gradients and improve defense 

effectiveness.Mao et al. [31] drew on NLP-style adversarial training, 

converted images into discrete visual words through VQGAN, and used 

symbolic adversarial disturbances to minimize risks, significantly im-

proving the performance of visual representations. Yoon et al. [8] 

proposed an EBM adversarial purification method based on denoising 

score matching (DSM) training, which can quickly purify attacked im-

ages in a small number of steps.Yang et al. [3] proposed a defense 

method based on matrix estimation, which destroys the adversarial noise 

structure by randomly deleting pixels and reconstructing the image, 

strengthening the global structure of the original image, and making the 

network more consistent with human classification perception. Although 

adversarial defense methods have made progress, most existing adver-

sarial defense methods do not explicitly account for the dual nature 

of adversarial degradation in SFRL, namely, structural semantic degra-

dation and unstructured additive noise.Together, these two types of 

degradation pose a compounded challenge that existing adversarial de-

fense methods are not designed to handle effectively. Most adversarial 

training techniques focus on improving instance-level robustness but 

fail to capture the subtle structural misalignments caused by perturba-

tions in critical facial regions. Conversely, purification-based defenses 

typically operate in the image domain and lack mechanisms to disen-

tangle high-frequency noise entangled in the latent feature space. This 

motivates the need for defense strategies that jointly model both struc-

tural and unstructured degradations to robustly enhance the resilience 

of self-supervised facial representation learning.

3. The proposed method 

3.1. Problem definition and overview

The overview of the proposed DAR-SFRL is shown in Fig. 2. Our pri-

mary goal is to comprehensively defend SFRL models against semantic 

degradations caused by adversarial attacks, which include: (1) struc-

tured distortions in key facial regions (e.g., subtle inter-ocular distance 

shifts), and (2) imperceptible unstructured additive noise. These two 

degradation forms jointly undermine the model’s ability to capture fine-

grained facial details and perform accurate discrimination. To provide 

a theoretical foundation for this decomposition, we start with the math-

ematical definition of adversarial attacks. Mathematically, let 𝐹 denote 

a clean facial image, and 𝐹 

′ denote the attacked image:

𝐹 

′ = 𝐹 + 𝛿, (1)

where 𝛿 represents the semantic degradation introduced by the adver-

sarial attack. Although adversarial attacks are crafted to mislead models, 

their effect on images can be interpreted as a form of degradation, which
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Fig. 2. The training pipeline of our proposed DAR-SFRL. DAR-SFRL first summarizes the two types of subtle semantic degradation caused by adversarial attacks into 

a unified degradation formula (𝐅 

′ = 𝐅 ⋅ 𝐌 + 𝝐) that includes structured geometric distortion and unstructured additive noise, and then learns complex and diverse 

degradation patterns through k stages of iterative refinement, gradually reducing the impact of degradation attacks. Each stage consists of Degradation-Adaptive Face 

Restoration (DAFR) and Noise-Orthogonal Contrastive Learning (NOCL), where DAFR addresses the degradation matrix 𝑀 from structured distortions and NOCL 

further alleviate the influence of the additive noise 𝜖 from unstructured artifacts.

motivates the application of classical image degradation modeling [32] 

to analyze and decompose adversarially attacked images. Accordingly, 

we further decompose 𝐹 

′ as:

𝐹 

′ = 𝐹 ⋅ 𝑀 + 𝜖, (2)

where 𝑀 is a degradation matrix modeling structured distortions in key 

facial regions, and 𝜖 is an unstructured additive noise component. From 

the above, the semantic degradation introduced by the adversarial attack 

can be equivalently expressed as:

𝛿 = 𝐹 

′ − 𝐹 = (𝑀 − 𝐼) ⋅ 𝐹 + 𝜖, (3)

where 𝐼 is the identity matrix. This decomposition shows that 𝛿 consists 

of a structured distortion term (𝑀 − 𝐼) ⋅ 𝐹 that affects essential facial 

structures, and an unstructured additive noise term 𝜖.
Based explicitly on this unified degradation model Eq. (2), a straight-

forward goal of our DAR-SFRL is to recover the fine-grained details of 𝐹 

′ 

and make high-dimensional features of 𝐹 

′ and 𝐹 as similar as possible 

through a multi-stage reverse diffusion iterative optimization process, 

thus enabling better resilience against the subtle semantic degradation 

caused by adversarial attacks during inference. As mentioned previously, 

to reverse the effects of the adversarial attack and make the attacked 

image 𝐹 

′ close to the clean image 𝐹 , we introduce two key strategies 

in each stage of DAR-SFRL. Firstly, we attempt to progressively reverse 

the degradation function and restore fine-grained image details. This 

primarily corresponds to handling structural distortions in key facial re-

gions, which are controlled by the degradation matrix 𝑀 in Eq. (2). 

We term the related technique Degradation-Adaptive Face Restoration 

(DAFR). Secondly, we devise a Noise-Orthogonal Contrastive Learning 

(NOCL) scheme to further deal with the additive noise 𝜖 in Eq. (2). After 

the restoration of clean facial image, we also obtain additive noise repre-

sentations decomposed from the features of the original attacked image. 

We maximize the difference between this decomposed additive noise 

representation and the restored facial features so that the final facial 

features are better distinguished from noise representations. As a result, 

through the multi-stage joint training of DAFR and NOCL, our approach 

effectively alleviates the facial semantic degradation modeled by the

unified degradation function in Eq. (2). We will discuss more details 

in the following sections.

3.2. Degradation-adaptive face restoration (DAFR)

SFRL generally shows poor robustness when faced with adversarial 

attacks. A fundamental reason is their difficulty in handling structural 

semantic distortions in key facial regions, which can be formalized using 

a degradation matrix 𝑀 in Eq. (2), as it directly impacts the integrity 

of facial structural information. Therefore, we focus on mitigating the 

impact of 𝑀 , as defined in Eq. (2), which accounts for these structural 

distortions. In our assumptions, adversarial attacks often cause varying 

degrees of structural distortions to key facial regions in unpredictable 

ways. These non-fixed, unpredictable degradation patterns make it dif-

ficult for us to construct comprehensive and appropriate 𝑀 that covers 

all potential cases. Unlike previous studies that only deal with fixed 

degradation types, we treat 𝑀 as a potential random variable and per-

form inference in a data-driven manner. To this end, we introduce 

Bayes’ theorem [33] and try to model 𝑀 pairs without strong prior as-

sumptions, gradually reversing the degradation function and recovering 

fine-grained image details.

In particular, we infer the most likely clean image 𝐹 from the ob-

served data (the attacked image 𝐹 

′ ) using the maximum a posteriori 

(MAP) principle, aiming to maximize the posterior probability 𝑃 (𝐹 |𝐹 

′ ). 
This results in our DAFR component, which models and reverses the 

degradation function based on Bayes’ theorem. The DAFR treats the 

attacked image 𝐹 

′ with structural distortion as an observable variable 

and reverses the degradation process by recovering the clean image 𝐹 . 

More specifically, based on the MAP principle and the formulation of 

Eq. (2), we can prove that maximizing the negative logarithmic trans-

formation of 𝑃 (𝐹 |𝐹 

′ ) is equivalent to solving the following non-convex 

optimization problem:

arg min
𝐹

log 𝑃 (𝐹 |𝐹 

′ ) = arg min 

𝐹
‖𝐹 

′ − 𝐹 ⋅ 𝑀‖ 

2
2 + 𝛾𝑡(𝐹 ), (4)

′where ‖𝐹  

 − 𝐹 ⋅ 𝑀‖

2 represents2  the data fidelity term, which ensures 

that the solution conforms to the degradation process, 𝑡(𝐹 ) is a regu

larization term approximating the prior distribution 𝑃 (𝐹 ) over clean

-
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(Fig. 3. The structure of H 

𝑘) (⋅) and 𝑝𝑟𝑜𝑥 𝛾𝑡(𝐹 ) 

(⋅) in DAFR. H 

(𝑘) (⋅) uses two independent residual blocks 𝐶𝑁𝑁 and𝑟 (⋅)  𝐶𝑁𝑁 

𝑡(⋅),𝑟  to simulate the degradation matrix 𝑀 

and its transpose 𝑀 

𝑇 , respectively, thus modeling the degradation pattern. In contrast, the proximal operator 𝑝𝑟𝑜𝑥 𝛾𝑡(𝐹 ) 

(⋅) is approximated by a deep neural network 

comprising 3×3 convolutional layers 𝐶𝑁𝑁𝑐 (⋅) and a sequential module 𝐶𝑁𝑁𝑠𝑚 (⋅). The latter integrates 3×3 convolutional layers, PReLU activation, and a channel 

attention mechanism to capture and model the structural and semantic degradation induced by adversarial attacks.

facial representations. We adopt the 𝐿 1 

norm for its edge-preserving and 

sparsity-inducing properties, and 𝛾 is a hyperparameter that weights the 

regularization term 𝑡(𝐹 ).
Directly solving Eq. (4) for the global optimal solution is non-trivial 

because we assume that the degradation matrix 𝑀 is unknown and 

the data fidelity term in Eq. (4) is non-convex. To solve this prob-

lem, we attempt to apply Taylor’s expansion formula [34] with the 

gradient descent algorithm to gradually approximate the local optimal 

solution of Eq. (4). This approach reformulates the data fidelity term of 

Eq. (4) as a solvable multi-stage iterative refinement process comprising 

𝑘 stages. Accordingly, the update formula for the 𝑘-th stage of the above 

optimization can be described as follows:

𝐹 

(𝑘) = arg min
𝐹

𝑔(𝐹 

(𝑘−1) ) + 1 

2𝜆
‖𝐹 − 𝐹 

(𝑘−1) 

‖

2
2

+ 

⟨ 

𝐹 − 𝐹 

(𝑘−1) ,∇𝑔(𝐹 

(𝑘−1) ) 

⟩

+ 𝛾𝑡(𝐹 ), (5)

(where 𝐹 

𝑘) is the facial image restored at the 𝑘 (-th stage, 𝑔(𝐹 

𝑘−1) ) = 

‖𝐹 

′ −  

 𝐹 

(𝑘−1) ⋅ 𝑀‖

2,2  ∇ represents the gradient operator, weighted by the

step size 𝜆. Next, to make Eq. (5) even easier to solve, we follow the gra-

dient descent update rule to combine the quadratic and gradient terms 

to simplify the expression and use the gradient information to update the 

local optimal solution 𝐹 

(𝑘) . Specifically, we simplify Eq. (5) as follows:

𝐹 

(𝑘) = arg min
𝐹

1
2
‖𝐹 − (𝐹 

(𝑘−1) − 𝜆∇𝑔(𝐹 

(𝑘−1)))‖22 + 𝛾𝑡(𝐹 ). (6)

Then, to handle the non-differentiable regularization term 𝑡(𝐹 ), we apply 

the proximal operator [35] to Eq. (6) to adjust the solution during each 

iteration to ensure that it stays within a reasonable range and satisfies 

the regularization constraint. The updated form of Eq. (6) is as follows:

H 

(𝑘) (𝐹 

(𝑘−1) , 𝐹 

′ ) = 𝐹 

(𝑘−1) − 𝜆𝑀 

𝑇 (𝐹 

(𝑘−1) ⋅ 𝑀 − 𝐹 

′ ), (7)

𝐹 

(𝑘) = 𝑝𝑟𝑜𝑥 𝛾𝑡(𝐹 )(H 

(𝑘) (𝐹 

(𝑘−1) , 𝐹 

′ )), (8)

(where H 

(𝑘) (𝐹 

𝑘−1) , 𝐹 

′ ) is the conventional gradient descent update term 

that adjusts the current solution to approximate the ideal restored im-

age. 𝑝𝑟𝑜𝑥𝛾 𝑡( ) represents the proximal operator corresponding𝐹 (⋅)    to the 

regularization term 𝑡(𝐹 ). Through this proximal operation, the updated 

solution is supposed to not only fit the data as closely as possible but 

also ensure that the image restoration process adheres to the assumption 

about prior probability 𝑃 (𝐹 ).
In practice, we implement this process as a learnable DNN. As 

shown in Fig. 2, we combine Eqs. (7) and (8) with a DNN to con-

struct a degradation-adaptive face restoration module (DAFR) at each 

stage of DAR-SFRL, which learns to understand non-fixed, unpredictable 

degradation patterns and simulates their impact on the clean image.

Based on the above derivations, our DAFR adopts a data-driven 

strategy to approximate 𝑀 and 𝑀 

𝑇 in Eq. (7), using two independent

residual blocks 𝐶𝑁𝑁 𝑟 

(⋅) and its transpose 𝐶𝑁𝑁 

𝑡 (⋅)𝑟  to model degrada

tion and restoration operators. As shown in 

-

Fig. 3, 𝐶𝑁𝑁 𝑟 

(⋅) and 𝐶𝑁𝑁 

𝑡 

𝑟(⋅)
replace 𝑀 and 𝑀 

𝑇 in Eq. (7), enabling a data-driven implementation of

Eq. (7). The updated form is as follows:

H 

(𝑘) (𝐹 

(𝑘−1) , 𝐹 

′ ) = 𝐹 

(𝑘−1) − 𝜆𝐶𝑁𝑁 

𝑡
𝑟(𝐶𝑁𝑁 𝑟 

(𝐹 

(𝑘−1) ) − 𝐹 

′ ). (9)

Next, directly deriving an explicit 𝑝𝑟𝑜𝑥 𝛾𝑡(𝐹 ) 

(⋅) of Eq. (8) is difficult 

because the regularization term 𝑡(𝐹 ) is usually nonlinear and non-

differentiable. Therefore, we employ numerical approximation methods 

to approximate the proximal operator, utilizing DNNs to simulate the 

operation and model the impact of structural distortions on clean data. 

As shown in Fig. 3, by combining traditional optimization models with 

data-driven strategies, the updated form of Eq. (8) is as follows, forming 

the final update rule:

𝐹 

(𝑘) = 𝐶𝑁𝑁 𝑐 

(𝐶𝑁𝑁 𝑠𝑚(𝐶𝑁𝑁 𝑐 

(H 

(𝑘) (𝐹 

(𝑘−1) , 𝐹 

′ ))) 

+ 𝐶𝑁𝑁 𝑐 

(H 

(𝑘) (𝐹 

(𝑘−1) , 𝐹 

′ ))) + H 

(𝑘) (𝐹 

(𝑘−1) , 𝐹 

′ ), (10)

𝑁 

(𝑘) = 𝐹 

′ − 𝐹 

(𝑘) . (11)

 

 

(where 𝐹 

𝑘) and 𝑁 

(𝑘) represent the reconstructed image and the de

coupled structured distortion produced by DAFR at the 𝑘-th stage of 

DAR-SFRL, respectively. 𝐶𝑁𝑁 represents𝑠𝑚(⋅)  a serialization module 

consisting of a 3×3 convolutional layer, a PReLU activation function, 

and a channel attention layer. 𝐶𝑁𝑁 ⋅) represents another 

 

( 3×3 con𝑐  

volutional layer. Subsequently, to constrain the progressive refinement 

process of DAFR, we employ the 𝐿 1 

loss [

-

-

36] to measure the consis-

tency between the recovered facial image and the original clean image. 

Mathematically, the consistency loss is as follows:

𝐿 

(𝑘)
𝑚𝑎𝑒 = ‖𝐹 

(𝑘) − F‖ 1 

, (12)

where ‖ ⋅ ‖1  

represents the 𝐿1  

loss.

 Through the above iterative optimization, DAFR gradually refines 

the restored image by learning non-fixed, unpredictable degradation 

patterns and applying consistency loss constraints, enabling the DAFR 

network to robustly handle various structural distortions.

3.3. Noise-orthogonal contrastive learning (NOCL)

When facing semantic degradations caused by adversarial attacks, 

SFRL must handle not only structural distortions but also unstructured 

additive noise 𝜖 (as formulated in Eq. (2)). This noise, often entangled 

with fine-grained facial semantics such as micro-expression features, 

leads to latent-space interference that corrupts the learned identity

     

Neurocomputing 655 (2025) 131356 

5 



K. Wang, Y. Liu, C. Tang et al.

representations and degrades robustness. To further address this, we in-

troduce Noise Orthogonal Contrastive Learning (NOCL) after DAFR at 

each stage of DAR-SFRL.

As shown in Fig. 2, NOCL consists of three loss functions: noise-

orthogonal disentangling loss, face-robust contrastive loss, and noise-

sensitive contrastive loss. In our formulation, the additional noise intro-

duces subtle perturbations, making it difficult to directly remove it from 

the corrupted image. We thus introduce the noise orthogonal disentan-

gling loss to separate unstructured additive noise from the reconstructed 

images in the feature space, so that perturbations from 𝜖 can be better 

exposed and eliminated after training. After separating the unstructured 

additive noise, we further use the face-robust and noise-sensitive con-

trastive losses to learn the disentangled facial and noise features in their 

respective feature spaces, separately. This decoupled learning strategy 

enables each component to operate independently within its own feature 

space, minimizing the unstructured semantic interference from vari-

ous potential unstructured additive noise patterns on the restored facial 

features.

Noise-orthogonal Disentangling Loss: We first use a multilayer 

perceptron to project the decoupled reconstruction 

( )image  

 𝐹 

𝑘 and de

graded pattern 𝑁 

(𝑘) into high-dimensional feature 

( )spaces as 𝑓  

  

𝑘 = 

𝑀𝐿𝑃 (𝐹 

(𝑘) ), 𝑛( 𝑘) =  

 𝑀𝐿𝑃 (𝑁 

(𝑘)), where 𝑀𝐿𝑃 () represents a multilayer 

perceptron consisting of two fully connected layers. Then, to further 

separate unstructured additive noise, we aim to maximize the diver-

gence 𝑑 

𝑘 (𝑓 

(𝑘) , 𝑛 

(𝑘) ) between noise and reconstructed samples in the 

high-dimensional feature space. Formally, 𝑑  

 

𝑘(𝑓 

(𝑘) , 𝑛 

(𝑘) ) can be described 

as follows:

-

𝑑 

𝑘 (𝑓 

(𝑘) , 𝑛 

(𝑘) ) = ‖𝑓 

(𝑘) − 𝑛 

(𝑘)
‖ 

2 . (13)

𝑑  

        

𝑘(𝑓 

(𝑘) (We can prove that maximizing the divergence  , 𝑛 

𝑘) ) is approx

imately equivalent to minimizing the  

 

(nality loss between 𝑓 

𝑘)orthogo

and 𝑛( 𝑘) . To this end, we introduce a noise-orthogonal disentangling loss,

defined as follows:

-

𝐿 

(𝑘)
𝑜𝑟𝑡ℎ = 

1
𝑅

𝑅
∑ 

𝑟=1
‖𝑓 

(𝑘) ⋅ 𝑛 

(𝑘)
‖

2
2. (14)

After separating the unstructured additive noise, we introduce face-

robust contrastive loss and noise-sensitive contrastive loss to ensure that 

the model achieves high robustness in reconstructing facial features from 

images while maintaining sensitivity to various types of unstructured 

additive noise. The face-robust contrastive loss is designed to guide the 

model in learning more robust facial features, minimizing the influence 

of irrelevant information or disturbances. In contrast, the noise-sensitive 

contrastive loss focuses on capturing the diversity of unstructured addi

tive noise, further enhancing the model’s ability to distinguish between 

unstructured additive noise and genuine facial features. Specifically, 

we first 

′apply  

 stochastic data augmentation to transform any image 𝐹 

within the same batch, resulting in two correlated views of the same

face 𝐹 ′ and 𝐹 ′, and then  

  𝑖  𝑗    

′select another image 𝐹𝑧 from the same batch. 
′Next, we 𝐹 ′feed 𝐹 ′,  and 𝐹  

   𝑖  𝑗  𝑧 into the DAFR, the multilayer perceptron, 

and the noise-orthogonal disentangling loss, obtaining the restored facial 
( )

 𝑓 𝑘) ( ) (
features ,𝑖  𝑓 𝑘

, and 𝑓 𝑘
 , along with the unst𝑗 
𝑧  ructured additive noise 

( ) ( ) ( )
features 𝑛 𝑘

, 𝑛 𝑘 𝑘
  ,𝑗  and𝑖  𝑛 at

 
𝑧  the 𝑘-th stage. Subsequently, we construct

positive and negative sample pairs based on these features to calculate 

the face-robust contrastive loss and the noise-sensitive contrastive loss, 

respectively.

-

Face-robust Contrastive Loss: We perform face-robust contrastive 

(𝑘) (𝑘) (𝑘)
learning on these face-only features 𝑓 , 𝑓 , and𝑖 𝑗   𝑓 via𝑧  the designed 

face-robust contrastive loss. Specifically, we take the restored facial fea
(𝑘) (𝑘)

tures 𝑓 and𝑖  𝑓 of𝑗  two related views of the same face image as positive

samples and maximize the similarity between them. Meanwhile, we treat 

(𝑓 𝑘)
as𝑧  a negative sample and minimize its similarity to the positive sam

ples. Formally, the 𝑘-th stage of the face-robust contrastive loss can be

-

-

written as:

𝐿 

(𝑘)
𝑓 𝑎𝑐𝑒(𝑓

(𝑘)
𝑖 , 𝑓 (𝑘)

𝑗 , 𝑓 

(𝑘)
𝑧 ) = 𝑙 𝑓 (𝑓

(𝑘)
𝑖 , 𝑓 (𝑘)

𝑗 ) + 𝑙 𝑓 (𝑓
(𝑘)
𝑗 , 𝑓 (𝑘)

𝑖 ), (15)

𝑙 𝑓 (𝑓
(𝑘)
𝑖 , 𝑓 (𝑘)

𝑗 ) = − log
𝑒𝑥𝑝(

𝑠𝑖𝑚(𝑓 (𝑘)
𝑖 ,𝑓 (𝑘)

𝑗 )

𝜏 )

∑ 

𝑧=1,[𝑧≠𝑖] 

𝑒𝑥𝑝 

(

𝑠𝑖𝑚(𝑓 (𝑘)
𝑖 ,𝑓 (𝑘)

𝑧 )
𝜏

) , (16)

where 𝑠𝑖𝑚(⋅) is the cosine similarity of pairs. 𝜏 is the temperature 

parameter.

Noise-sensitive Contrastive Loss: We use the noise-sensitive con
(𝑘)

trastive loss designed for these unstructured additive noise features 𝑛𝑖 , 
( ) ( )

 

𝑛 𝑘
𝑗 , and 𝑛 𝑘

𝑧 to perform noise-sensitive contrastive learning. In detail, we
(𝑛 𝑘)

treat the unstructured additive noise features
 (

 𝑖 and 𝑛 𝑘) 

 with𝑗  the same

degradation pattern as positive samples and minimize the distance be

tween them in the feature space. Meanwhile, we treat the noise feature
(𝑛 𝑘)
𝑧 with different degradation pattern as a negative sample and max

imize the distance between it and the positive samples in the feature 

space. Formally, the noise-sensitive contrastive loss at the 𝑘-th stage can 

be written as:

-

-

-

𝐿 

(𝑘)
𝑛𝑜𝑖𝑠𝑒(𝑛

(𝑘)
𝑖 , 𝑛(𝑘)𝑗 , 𝑛 

(𝑘)
𝑧 ) = 𝑙 𝑛 

(𝑛(𝑘)𝑖 , 𝑛(𝑘)𝑗 ) + 𝑙 𝑛(𝑛
(𝑘)
𝑗 , 𝑛(𝑘)𝑖 ), (17)

𝑙 𝑛(𝑛
(𝑘)
𝑖 , 𝑛(𝑘)𝑗 ) = − log

𝑒𝑥𝑝( 

𝑠𝑖𝑚(𝑛(𝑘)𝑖 ,𝑛(𝑘)𝑗 )

𝜏 )

∑ 

𝑧=1,[𝑧≠𝑖] 

𝑒𝑥𝑝 

( 

𝑠𝑖𝑚(𝑛(𝑘)𝑖 ,𝑛(𝑘)𝑧 )
𝜏

) , (18)

where 𝑠𝑖𝑚(⋅) is the cosine similarity of pairs. 𝜏 is the temperature 

parameter.

The combination of these loss functions provides a comprehensive 

noise decoupling strategy that explicitly separates unstructured additive 

noise from meaningful facial semantics in the latent space. By mitigating 

noise-induced interference, this strategy enables the model to focus on 

learning more robust and identity-preserving facial representations.

3.4. Overall learning objective

Overall, the proposed DAR-SFRL incorporates four types of objective 

functions: consistency loss, noise orthogonal disentangling loss, face-

robust contrastive loss, and noise-sensitive contrastive loss. Therefore, 
(𝑘) (𝑘) (𝑘)

the total loss function 𝐿 is the weighted sum of 𝐿 𝑚𝑎𝑒 

, 𝐿 ,𝑜𝑟𝑡ℎ 𝐿 ,𝑛𝑜𝑖𝑠𝑒  and
(𝑘)

 

𝐿 , can𝑓 𝑒  which  be given by:𝑎𝑐

𝐿 =
𝐾
∑

𝑘=1

(

𝐿 

(𝑘)
𝑚𝑎𝑒 + 𝐿(𝑘) 

𝑜𝑟𝑡ℎ 

+ 𝛼 𝑛𝐿
(𝑘) 

𝑛𝑜𝑖𝑠𝑒 

+ 𝛼 𝑓𝐿 

(𝑘)
𝑓 𝑎𝑐𝑒

) 

, (19)

where 𝐾 represents the total number of stages in DAR-SFRL. The pa

rameters 𝛼𝑛 and 𝛼𝑓 are dynamic weights that adaptively balance the 

learning objectives based on the contributions of noise sensitivity and 

face sensitivity to face representation. Following prior work [

-

22,37], we 

use dynamic weight averaging to obtain 𝛼𝑛 and 𝛼 𝑓 

during training.

4. Experiment and analysis

To evaluate the robustness and generalizability of the proposed 

model DAR-SFRL, we conduct experiments on face-related downstream 

tasks, including Facial Expression Recognition (FER), Face Recognition 

(FR), and AU detection. Compared to other self-supervised face rep

resentation and defense methods, DAR-SFRL demonstrates impressive 

robustness and generalizability to various adversarial attacks during the 

inference phase. Finally, we perform ablation experiments to verify the 

effectiveness of the proposed key modules.

-

Neurocomputing 655 (2025) 131356 

6 



K. Wang, Y. Liu, C. Tang et al.

Fig. 4. The inference pipeline of our proposed DAR-SFRL. With the generate attacked samples as test data, we first use the pre-trained DAR-SFRL model to extract the 

facial representation, then employ a simple liner classifier to perform three face-related downstream tasks (FER, FR, AU detection), thereby verifying the robustness 

and generalization ability of DAR-SFRL.

4.1. Implementation details

Pre-training Phase: Our proposed model is implemented using the 

PyTorch framework and trained for 1000 epochs with the Adam opti-

mizer (𝛽1 = 0.9, and 𝛽2 = 0.999). The batch size and initial learning 

rate are set to 256 and 0.0001, respectively. We utilize cosine anneal-

ing to decrease the learning rate, with the temperature parameter 𝜏 set 

to 0.07. All models are trained and tested on an NVIDIA GTX 3090 

GPU. The training process follows the data augmentation techniques and 

negative interpolation used in the baseline PCL [22].

Inference Phase: As shown in Fig. 4, to evaluate the robustness 

and generalizability of DAR-SFRL, we employ seven different adversar-

ial attacks, including PGD [12], UPGD [27], BIM [11], MIFGSM [13], 

EOTPGD [38], DIFGSM [4], and NIFGSM[28]. Each of these attack meth-

ods is used to generate a set of attacked samples, which serve as the test 

datasets for evaluating our model’s performance under different attack 

scenarios. Next, we use the pre-trained DAR-SFRL model to extract facial 

representations of the attacked samples, and then train three simple lin-

ear classifiers to perform three face-related downstream tasks (FER, FR, 

AU detection) respectively to verify the robustness and generalization 

ability of DAR-SFRL.

4.2. Datasets

Pre-training Datasets: During the pre-training phase, the 

VoxCeleb1 [39] and VoxCeleb2 [40] datasets introduce different 

levels of noise disturbances to represent the diverse adversarial attack 

patterns and are preprocessed using conventional data augmentation 

methods. Additionally, the aforementioned datasets lack annotations. 

They include a total of 299,085 video clips from approximately 7,000 

speakers. Frames are extracted from the videos at a rate of 6 frames 

per second, cropped to center the face, and resized to a resolution of 

64×64.
Downstream Task Datasets: For FER evaluation, we used the RAF-

DB [41] dataset, which contains 12,271 training images and 3,068 test 

images. For FR evaluation, we used the CPLFW [42] dataset, which in-

cludes 3,000 pairs of frontal images with pose differences. For facial 

Action Unit (AU) detection, we used the BP4D [43] dataset, a sponta-

neous Facial Action Coding System (FACS) dataset containing 328 videos 

from 41 subjects (18 males and 23 females).

4.3. Overall performance on face-related downstream tasks 

4.3.1. Performance on FER

Comparison of SFRL Methods: Table 1 presents the performance 

of different SFRL methods on the FER task under both clean (w/o

attack) and adversarial attack conditions. The results showed that DAR-

SFRL not only achieved competitive accuracy on clean samples but 

also demonstrated strong robustness against subtle semantic degrada-

tions introduced by various adversarial attacks. Specifically, on clean 

samples, DAR-SFRL achieved an accuracy of 67.14 %, ranking sec-

ond only to PCL [22], which indicates its competitive feature learning 

capability in the absence of attacks. Furthermore, DAR-SFRL outper-

formed other methods when subjected to subtle semantic degradation 

caused by seven different adversarial attacks. For instance, under the 

NIFGSM [28] attack, DAR-SFRL maintained an accuracy of 66.33 %, 

reflecting only a 0.81 % drop compared to the clean condition. In 

comparison, the accuracy of PCL dropped from 67.66 % to 59.32 %, 

corresponding to an 8.34 % decline. This stark difference highlighted 

the superior capability of DAR-SFRL in simultaneously addressing both 

types of degradation, whereas other methods such as SimCLR[44] and 

MoCo [45] showed much greater performance drops (32.49 % and 

15.12 %, respectively) under similar conditions. Overall,DAR-SFRL ex-

hibited stronger robustness against semantic degradations than other 

SFRL methods.

Comparison of Defense Methods: Table 1 also reports the perfor-

mance of DAR-SFRL and existing adversarial defense methods on the 

FER task, including RoCL [5], ACL [6], and the supervised method 

TRADES [46], all of which enhance model robustness through PGD-

based adversarial training. In addition, DiffPure [7] separates the in-

terference of adversarial attacks through adversarial purification. The 

results demonstrate that DAR-SFRL outperforms these methods on clean 

samples (w/o attack), achieving an accuracy of 67.14 %, significantly 

higher than RoCL, ACL, and TRADES. Under adversarial attacks, DAR-

SFRL consistently achieves higher accuracy than all comparison meth-

ods. For instance, under the UPGD [27] attack, DAR-SFRL maintains an 

accuracy of 66.62 %, reflecting only a 0.52 % drop. Meanwhile, DiffPure, 

RoCL, ACL, and TRADES achieve accuracies of 47.04 %, 43.48 %, 

15.48 %, and 37.32 %, corresponding to declines of 4.30 %, 11.61 %, 

32.73 %, and 5.41 %, respectively, from their performance under clean 

conditions.

In summary, these results highlight the superior capability of DAR-

SFRL in defending against semantic degradations introduced by adver-

sarial attacks. Unlike existing methods that handle only one type of 

degradation when faced with such compound perturbations, DAR-SFRL 

offers a unified solution that addresses both, providing better protection 

in real-world scenarios.

4.3.2. Performance on FR

Comparison of SFRL Methods: Table 2 presents the performance of 

various SFRL methods on the FR task under both clean (w/o attack) and
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adversarial attack conditions. As a continuation of the FER evaluation, 

this task serves as a cross-task validation of DAR-SFRL’s generalizability 

in face-related scenarios. In contrast to FER, which requires fine-grained 

sensitivity to facial expression variations, FR focuses on preserving 

identity-related features under semantic degradations. From the results, 

DAR-SFRL not only exhibits strong robustness in preserving identity con-

sistency under clean conditions but also demonstrates high resistance to 

subtle semantic degradations caused by adversarial attacks.

In detail, DAR-SFRL achieved an accuracy of 63.61 % under clean 

conditions, which demonstrates its effective learning of identity rep-

resentations. Under the BIM [11] attack, its performance slightly de-

creased to 62.97 %, with a minimal drop of only 0.64 %. Similarly, 

DAR-SFRL maintained stable performance when subjected to PGD [12], 

EOTPGD [38], and NIFGSM [28] attacks, with accuracy consistently 

close to 63.61 %. In contrast, the performance of other SFRL models 

showed more substantial declines. For instance, PCL [22], SimCLR [44], 

and FRA [23] experienced accuracy drops of 7.59 %, 14.24 %, and 

3.79 %, respectively. MoCo [45] and FaceCycle [14] also saw perfor-

mance reductions of 7.78 % and 2.81 %, respectively.

Comparison of Defense Methods: Next, we also reported the per-

formance of DAR-SFRL and existing adversarial defense methods on 

the FR task in Table 2. The results indicated that existing defense 

methods such as DiffPure [7], RoCL [5], ACL [6], and the super-

vised method TRADES [46] struggled to effectively handle the semantic 

degradations caused by adversarial attacks, which limited their overall 

robustness. In contrast, DAR-SFRL was explicitly designed to simulta-

neously address semantic degradations, allowing it to preserve identity 

consistency even under adversarial attack conditions. For example, un-

der the UPGD [27] attack, DAR-SFRL experienced only a 0.95 % drop 

in accuracy, demonstrating superior capability in preserving identity-

relevant features compared to DiffPure, RoCL, ACL, and TRADES. By 

contrast, these methods suffered significantly larger drops in accuracy, 

ranging from 2.93 % to 4.11 %.

Overall, these performance advantages underscore DAR-SFRL’s 

stronger adaptability to semantic degradations caused by adversarial 

attacks, making it a more robust and reliable solution for face recog-

nition and significantly enhancing the overall security and stability of 

face recognition systems.

4.3.3. Performance on facial AU detection

Comparison of SFRL Methods: Table 3 compares the performance 

of different SFRL methods on the facial AU task under both clean and 

adversarial conditions. Unlike FER and FR tasks, AU detection requires 

finer recognition of facial actions, making it more vulnerable to small 

structural distortions and noise, which can lead to missed or incorrect 

detections. This high precision demand makes AU detection particularly 

sensitive to semantic degradations caused by adversarial attacks. The 

results in Table 3 show that DAR-SFRL exhibited remarkable robust-

ness, maintaining strong performance even under the subtle semantic 

degradations induced by adversarial attacks. Specifically, under the 

UPGD [27] attack, DAR-SFRL achieved an F1 score of 51.20, reflect-

ing only a 1.47 drop compared to the clean condition. When subjected 

to other attacks such as PGD [12], BIM [11], and MIFGSM [13], the de-

clines in F1 score remained within the narrow range of 0.97 to 1.17, 

indicating a high level of overall performance stability. In contrast, 

the performance degradation of other SFRL methods was significantly 

more pronounced. Under the UPGD attack, the F1 scores of PCL [22], 

SimCLR [44], FRA [23], MoCo [45], and FaceCycle [14] dropped 

by 5.50, 7.12, 1.95, 7.33, and 5.78 points, respectively—substantially 

higher than the 1.47 drop observed for DAR-SFRL. Similar trends were 

observed under other adversarial attacks, further confirming that DAR-

SFRL demonstrates superior robustness against semantic degradations 

compared to existing SFRL methods.

Comparison of Defense Methods: Next, we also compared the perfor-

mance of DAR-SFRL with existing adversarial defense methods (such as 

RoCL [5], ACL [6], and TRADES [46]) on the facial AU detection task in

Table 3. The results indicate that these defense methods, which relied on 

supervised adversarial training to enhance model stability under attacks, 

typically fail to effectively handle the semantic degradations caused 

by adversarial attacks. However, in AU detection, structural distortions 

and localized noise often occur simultaneously, forming compound at-

tacks that limit the robustness of these methods. In contrast, DAR-SFRL 

achieved stronger generalization robustness by jointly modeling the se-

mantic degradations introduced by adversarial attacks. For example, 

under the UPGD [27] attack, DAR-SFRL achieved an F1 score of 51.20, 

representing only a 1.47 drop from the clean condition. This was sig-

nificantly better than the performance losses observed for RoCL (2.12), 

ACL (1.57), and TRADES (2.43). In summary, DAR-SFRL demonstrated 

exceptional robustness against the semantic degradations introduced by 

various adversarial attacks in AU detection tasks. It effectively identified 

and resisted adversarial interference, ensuring the accuracy and stability 

of AU detection under various challenging conditions.

4.4. Ablation study 

4.4.1. Effect of DAFR and NOCL

Table 4 examines the effects of each component of DAR-SFRL on 

FER task performance, with a focus on robustness under both clean 

and adversarial conditions. The results indicated that, for the FER 

task, DAFR and NOCL modules played a crucial role in detecting sub-

tle facial expression variations under adversarial attacks and ensuring 

the model’s robustness. When DAFR was removed, the robustness of 

DAR-SFRL(C) significantly decreased under attacks, especially under 

PGD [12], BIM [11], and EOTPGD [38], with accuracy drops of 7.27 %, 

9.65 %, and 9.42 %, respectively, compared to the full model DAR-

SFRL. This highlighted the critical role of DAFR in reversing semantic 

degradation and preserving fine-grained facial semantics. In contrast, 

when NOCL was removed, DAR-SFRL(B) showed significant perfor-

mance degradation both under clean and adversarial conditions, with 

accuracy dropping by over 1 %, which was greater than the accuracy 

drop of the full model DAR-SFRL. This emphasized the importance of 

NOCL in mitigating the interference of unstructured noise and maintain-

ing discriminative features. These results suggest that DAFR and NOCL 

are key components in the robustness and performance of the DAR-SFRL 

model.

4.4.2. Effect of various 𝑀 architectures in DAFR

Table 5 explores the impact of different designs of degradation matrix 

𝑀 in DAFR on the model performance. Given that adversarial attacks 

introduce unpredictable structural distortions, conventional fixed-form 

degradation matrices are insufficient to capture such variability. To ad-

dress this, we designed 𝑀 as a learnable, lightweight neural module 

that adaptively models the structural degradation induced by attacks. 

We evaluated several representative lightweight DNN architectures: (i) 

a CNN consisting of two 3 × 3 convolutional layers, each followed by 

ReLU and BatchNorm; (ii) a ResNet composed of two basic residual 

blocks with skip connections, each block containing two convolutional 

layers; (iii) a LSTM with two layers and a hidden dimension of 256; 

and (iv) a Transformer with two standard blocks, each equipped with 4 

attention heads and a hidden dimension of 256. The results revealed sub-

stantial differences in these architectures’ abilities to simulate structural 

semantic degradation and recover fine-grained details under adversar-

ial attacks. Specifically, while CNNs are effective at modeling local 

spatial features, they are limited in capturing global context, which 

resulted in a 2.28 % accuracy drop in clean conditions compared to 

ResNet. The LSTM, though suitable for sequential modeling, is less ca-

pable of preserving spatial structure in images, which led to reduced 

robustness and accuracy drops ranging from 0.82 % to 2.32 % under 

attacks. Transformers achieved the highest accuracy (68.34 %) in clean 

conditions, with accuracy drops ranging from 2.01 % to 2.45 %. In con-

trast, ResNet struck a better balance between clean performance and 

robustness. Benefiting from its skip connection mechanism, it facilitated
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effective information flow and retention throughout the network, en-

abling more stable recovery of fine-grained semantic details and more 

robust performance under diverse attack scenarios.

4.4.3. Effect of various losses in NOCL

Table 6 presents the impact of various loss functions in NOCL 

on model performance. NOCL consists of the noise-orthogonal disen

tangling loss (𝐿  

 

), the noise-sensitive contrastive los𝑜𝑟𝑡ℎ  s (𝐿𝑛𝑜𝑖𝑠𝑒 

 

), and 

the facial-robust contrastive loss (𝐿  

 

it 

 

), and is designed𝑓𝑎𝑐𝑒   to miti

gate semantic degradation caused by adversarial attacks, particularly 

non-structural additive noise. We conducted ablation experiments by 

progressively removing 𝐿 

 

, 𝐿 

  

, and The𝑜𝑟𝑡ℎ  .𝑓𝑎𝑐𝑒 𝐿𝑛𝑜𝑖𝑠𝑒   

 

results demon

strated that these loss functions significantly affected the accuracy and 

robustness of DAR-SFRL under both clean and adversarial conditions, 

indicating that these losses play critical roles in enhancing the model’s 

overall defense capability. Specifically, DAR-SFRL(a), which removed 

𝐿 , resulted in a 2.6 % accuracy drop𝑜𝑟𝑡ℎ  under  

 

clean conditions com

pared to the complete DAR-SFRL. Under adversarial attacks, its accuracy 

further decreased by 2.19 % to 3.49 % relative to its own accuracy 

in clean conditions. Building upon this, DAR-SFRL(b), which further 

removed 𝐿  

 

, 
 

exhibited a subst𝑓𝑎𝑐𝑒  antial 11.02 % accuracy decrease in 

clean conditions compared to DAR-SFRL(a), while the drop under ad

versarial attacks was relatively small—only 0.58 % to 1.05 %. Finally, 

DAR-SFRL(c), which removed all three losses, showed an additional 

2.64 % accuracy drop in clean conditions compared to DAR-SFRL(b). 

Under adversarial conditions, its accuracy declined by 1.11 % to 1.27 %, 

which was greater than the drop observed in DAR-SFRL(b). In summary, 

the performance comparison between DAR-SFRL and its three ablated 

variants under both clean and adversarial conditions demonstrates that 

each loss component in NOCL plays a distinct role in robustness model-

ing. Their joint design and complementary effects enable the model to 

achieve a well-balanced trade-off between robustness and accuracy in 

challenging environments.

-

-

-

-

-

4.4.4. Effect of iteration count 𝑘
Table 7 presents the effect of varying the number of reverse diffu-

sion iterations 𝑘 on model performance. Without adversarial attacks, 

setting 𝑘 = 3 achieved the highest accuracy (67.14 %), which was 

5.15 %, 2.24 %, and 7.00 % higher than those obtained with 𝑘 = 2, 
4, and 5, respectively. These results suggest that a moderate itera-

tion depth provides the best trade-off between semantic recovery and 

noise amplification. Under adversarial attacks, the influence of 𝑘 is less 

pronounced. Once key semantic cues are sufficiently restored, further 

refinement yields diminishing returns in robustness. Based on these 

findings, we adopt 𝑘 = 3 as the default setting throughout our exper-

iments. This choice balances efficiency and representational fidelity, 

while promoting stable training and generalization across tasks.

4.4.5. Complexity analysis

Table 8 provides a computational complexity comparison of our 

DAR-SFRL and current defense attack methods. From the table, DAR-

SFRL significantly outperforms the supervised TRADES [46] and self-

supervised ACL [6] and RoCL [5] in inference time (5.97 s), FLOPs 

(0.04 G), and parameter size (0.03 M). Specifically, ACL and RoCL 

rely on adversarial training, which requires the continual genera-

tion of adversarial samples during training to enhance robustness. 

This mechanism drives the model architecture toward larger capac-

ity to accommodate increasingly complex adversarial perturbations. 

Although adversarial sample generation is confined to the training 

phase, the resulting increase in model complexity still imposes a sub-

stantial computational burden during inference, with ACL and RoCL 

incurring inference times of 14.57 and 13.10 s and FLOPs of 1.34 G 

and 0.56 G, respectively. Moreover, the parameter counts of TRADES, 

ACL, and RoCL all approach 11 M, further increasing storage and 

memory demands. In contrast, DAR-SFRL eliminates the need for ad-

versarial training and adopts a lightweight self-supervised framework
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Table 8 

Computational complexity comparison of our DAR-SFRL and current 

defense attack methods.

Methods TRADES [46] ACL [6] RoCL [5] DAR-SFRL

Inference time 10.02 s 14.57 s 13.10 s 5.97 s

FLoPs 0.74 G 1.34 G 0.56 G 0.04 G

Params. 11.30 M 11.30 M 11.17 M 0.03 M

enhanced by degradation-adaptive modeling, which ensures robustness 

while significantly reducing inference cost and model size. These ad-

vantages demonstrate DAR-SFRL’s superior computational and resource 

efficiency.

4.5. Visualization 

4.5.1. Visualization of DAFR and NOCL impact on feature distribution

Fig. 5 presents T-SNE visualizations of the feature space on the FER 

task, offering a qualitative perspective on how DAFR and NOCL con-

tribute to the robustness of DAR-SFRL. Compared to the quantitative 

ablation analysis in Section 4.4.1, this analysis intuitively demonstrates 

the impact of each component on the distribution of emotion cate-

gories under adversarial conditions. As shown in Fig. 5, under the 

PGD attack, the sequential integration of NOCL and DAFR progres-

sively improves the separation of emotion categories in the feature 

space. Specifically, Fig. 5(a) shows the baseline configuration without 

either module, where substantial category overlap and scattered feature 

points are evident. Fig. 5(b) and (c) demonstrate that introducing either 

NOCL or DAFR individually helps partially restore feature compactness 

and class boundaries. Notably, Fig. 5(d) reveals that the combined use 

of both modules leads to clearer separation among categories such as 

”Surprise,” ”Neutral,” and ”Happiness,” effectively minimizing overlap. 

These visual patterns serve as qualitative evidence that DAFR and NOCL 

collaboratively enhance adversarial robustness by mitigating semantic 

degradation and suppressing noise-induced feature distortion.

4.5.2. Visualization of per category performance using confusion 

matrix

Fig. 6 visualizes the classification results of various SFRL methods 

under PGD [12] attacks using confusion matrices. As shown, DAR-SFRL 

maintains relatively stable and balanced performance across all emo-

tion categories. In contrast, methods such as PCL [22], SimCLR [44], 

and MoCo [45] exhibit more severe misclassification patterns under the 

same adversarial conditions. Specifically, DAR-SFRL surpasses PCL by 

an average of approximately 15 % in six emotion categories, excluding 

“Surprise.” While SimCLR performs slightly better than DAR-SFRL on 

the “Disgust” category, it suffers substantial performance drops in oth-

ers, such as “Fear,” where the accuracy gap reaches up to 47 %. MoCo is 

particularly vulnerable, trailing behind DAR-SFRL in most categories ex-

cept “Neutral.” These confusion matrix visualizations provide intuitive 

evidence of classification biases across different emotion categories, of-

fering insights into each model’s prediction weaknesses and potential 

areas for improvement under adversarial conditions.

Fig. 5. Feature distribution visualization for the FER task using DAR-SFRL with and without DAFR and NOCL on the RAF-DB dataset.

Fig. 6. The confusion matrix of DAR-SFRL and other SFRL methods on FER task 

under the PGD attack. The horizontal and vertical axes represent the predicted 

and true labels, respectively. The axis values correspond to the following emo-

tions: 0: Surprise, 1: Fear, 2: Disgust, 3: Happiness, 4: Sadness, 5: Anger, 6: 

Neutral.

4.5.3. Visualization of feature distribution under structured and 

unstructured noise

Fig. 7 visualizes the distributions of original feature without attacks 

and the attacked feature using Kernel Density Estimation (KDE), aiming 

to assess the specific impact of structured distortion and unstructured 

noise introduced by adversarial attacks on the high-dimensional feature 

space. By comparing different variants of the DAR-SFRL model (with or 

without DAFR and NOCL), we intuitively analyzed the effect of these 

two types of semantic degradation on feature consistency. As shown 

in Fig. 7(a), the Baseline model did not incorporate either DAFR or 

NOCL, making it difficult to handle the structured distortion and un-

structured noise introduced by adversarial attacks, resulting in a low 

overlap score (0.5357) between original feature without attacks and the 

attacked feature, indicating a significant feature shift. Considering that 

DAFR and NOCL are specifically designed to address structured distor-

tion and unstructured noise respectively, Fig. 7(b) and (c) further present 

the performance of models incorporating only NOCL and only DAFR. 

The results showed that both types of semantic degradation introduced 

by adversarial attacks severely affect feature consistency: when only 

NOCL was used, only unstructured noise was mitigated with an overlap 

area of 0.7204; when only DAFR was applied, only structured distortion 

was resolved with an overlap area of 0.9476. In contrast, the complete 

DAR-SFRL model in Fig. 7(d), which integrated both DAFR and NOCL, 

achieved the highest feature overlap (0.9849), effectively aligning the 

original feature without attacks and the attacked feature. In summary,
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Fig. 7. Visualization of the data distribution relationships among the attacked feature, original feature without attacks, and their overlapping regions using kernel 

density estimation. Each subfigure corresponds to a variant of DAR-SFRL: (a) Baseline (both noises not handled), (b) +NOCL only (handles unstructured noise), (c) 

+DAFR only (handles structured distortion), and (d) full DAR-SFRL (handles both). Overlap scores are provided to quantify distribution similarity.

Fig. 8. Comparison of prediction probability scores on the baseline and our method under attacks. The values under the face images represent the prediction probability 

to the truth category. The ✓ and × symbols indicate the correct and wrong identification for the ground truth when under attacks, respectively.

these KDE visualizations clearly verify the effectiveness of DAR-SFRL 

in mitigating both structured and unstructured semantic degradation, 

and further reveal the independent and synergistic contributions of its 

components to enhancing feature robustness.

4.5.4. Visualization of prediction probability scores under adversarial 

attacks

Fig. 8 illustrates the model’s robustness to adversarial attacks from 

the perspective of output probability scores in face-related downstream 

tasks. We fed both unattacked and adversarially perturbed samples into

the Baseline and DAR-SFRL models for the FER and FR tasks, respec-

tively. The visualization results show that the Baseline model exhibits 

significant fluctuations in predicted probability scores when exposed to 

adversarial attacks, often resulting in incorrect predictions or low con-

fidence. In contrast, the DAR-SFRL model consistently maintains high 

confidence in the correct labels for both clean and attacked samples, 

demonstrating strong robustness to adversarial perturbations. Together 

with the findings in Section 4.5.3, these results further confirm that DAR-

SFRL not only stabilizes feature-level representations but also improves 

the reliability of task-level decisions under adversarial attacks.
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5. Conclusion

In this paper, we propose a novel framework, Degradation-based 

Attack-Robust Self-supervised Face Representation Learning (DAR-

SFRL), which is designed to address the challenges posed by adversarial 

attacks on clean facial data. This method interprets adversarial attacks 

from the perspective of facial semantic degradation, and models the re-

sulting subtle degradations as a composite degradation function that 

incorporates both structured geometric distortions and unstructured 

additive noise. Theoretically, this formulation enables a comprehen-

sive and targeted defense against adversarial attacks. To systematically 

address these two components, we introduce two key modules in 

DAR-SFRL: Degradation-Adaptive Face Recovery (DAFR) and Noise-

Orthogonal Contrastive Learning (NOCL). DAFR utilizes maximum a 

posteriori (MAP) estimation to progressively reverse the degradation 

function and recover fine-grained image details. It accurately models the 

relationship between degradation patterns and clean data and learns dif-

ferent degradation patterns during the gradual disentangling process.To 

further enhance robustness, NOCL incorporates a noise-orthogonal dis-

entangling loss, a facial-robust contrastive loss, and a noise-sensitive 

contrastive loss. This ensures that the model not only discriminates be-

tween the additive noise of adversarial attacks and clean images but 

also generalizes well to various adversarial attacks. Through the syn-

ergistic training of DAFR and NOCL, DAR-SFRL effectively captures the 

perturbations caused by adversarial attacks, enabling a more precise un-

derstanding of adversarial attack patterns. This enhances the robustness 

of DAR-SFRL in face-related tasks, providing greater resilience against 

various adversarial attacks during inference. Despite the effectiveness of 

our approach, we find that DAR-SFRL still has some room for improve-

ment. At present, the model lacks learning of the degradation process, 

which introduces uncertainty in the progressive recovery process. In fu-

ture work, we plan to build a degradation-recovery framework based 

on physical information to provide richer and more comprehensive fea-

ture information for self-supervised face representation tasks in open 

environments.
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